
Lecture 22: Matchings in bipartite
graphs

Janko Gravner

MAT 145
Mar. 3, 2021

1



Bipartite graph

A bipartite graph has vertices divided into two disjoint sets
X = {x1, . . . , xm} and Y = {x1, . . . , xn}, and a set of edges ∆
so that every edge is between a vertex in X and a vertex in Y .
(The edges can be oriented or unoriented; it does not matter for
this topic.) For example:
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X Y An edge between xi and yj can
be thought of as a possible
match between xi and yj . We
can think of X and Y as sets of
men and women in a
matchmaking situation, as sets
of jobs and workers, as sets of
tasks and computer
processors, etc.
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Matching in a bipartite graph

A matching in a bipartite graph G = (X ,∆,Y ) is a subset M of
∆, such that no two edges of M meet at a single vertex. Here
are two matchings: {(x1, y1), (x3, y3)} and
{(x1, y1), (x3, y2), (x4, y3)}
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x2
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x4

y1
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X Y
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x3
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In a matching M, vertices which are not part of an edge in M
are called free.
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Maximal matching

We want to find a maximal matching M∗ in the graph G, which
has the largest possible number of edges, i.e., matched pairs:

|M∗| = max{|M| : M is a matching} = ρ(M).

The first thing to observe is that if M is inclusion-maximal (no
edge can be added while preserving the matching condition), it
is not necessarily maximal; see our first matching on the
previous slide. Also, M∗ is not necessarily unique. In our
example, ρ(G) = 3, and we have 3 maximal matchings.
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This is not a new problem

For a bipartite graph G, we can form the compatibility matrix :
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X Y

y1 y2 y3

x1 ♥ ♥
x2 ♥
x3 ♥ ♥
x4 ♥
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This is not a new problem
A matching is exactly the same as a placement of nonattacking
rooks on ♥’s:

x1
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y3

X Y

y1 y2 y3

x1 ♥ ♥
x2 ♥
x3 ♥ ♥
x4 ♥

We can compute the rook polynomial by eliminating the ♥ in
the second column:

1 + 5x + 5x2 + x(1 + 4x + 3x2) = 1 + 6x + 9x2 + 3x3,

so we have 3 maximal matchings. If we just want to determine
ρ(G) and find one M∗, this is not an efficient method.
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Alternating chain

Suppose M is a matching in G = (X ,∆,Y ). Suppose that

v1,w1, v2,w2, . . . , vk ,wk

is a sequence of distinct vertices such that vi ∈ X , wi ∈ Y for all
i , v1 and wk are free, and moreover the successive pairs of
vertices alternate between being connected by edges not in M
and edges in M:

v1 − w1, . . . , vk − wk ∈ ∆ \M; and
w1 − v2, . . . ,wk−1 − vk ∈ M.

Then the sequence of vertices together with the edges joining
them in order is an alternating chain.
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Alternating chain

Here is an alternating chain for the matching on the left,
beginning at x2 and ending at y2.
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Alternating chain

If M has an alternating chain, then it cannot be maximal,
because we can switch the status of all edges on the chain and
obtain a larger matching.
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Even more . . .
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Alternating chain

Theorem
A matching M of G = (X ,∆,Y ) is maximal if and only if it has
no alternating chain.

Proof.
Assume M ′ is a matching and |M ′| > |M|. We need to find an
alternating chain. Let ∆∗ be the set of edges that consist of
edges that are in M or in M ′, but not in both, that is,

∆∗ = (M ′ \M) ∪ (M \M ′)

As |M ′| > |M|, |M ′ \M| > |M \M ′|. In the graph (X ,∆∗,Y ),
every vertex is an endpoint of at most one edge in M ′ \M and
also of at most one edge in M \M ′. So ∆∗ can be partitioned
into paths and cycles of the following four types, with red edges
in M \M ′ and blue in M ′ \M.
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Alternating chain

Proof, continued.
Type 1:

Begin and end in M ′ \M.

Type 2:

Begin and end in M \M ′.
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Alternating chain

Proof, continued.
Type 3:

Begin in M ′ \M and end in
M \M ′, or vice versa.

Type 4:

Cycle.
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Alternating chain

Proof, continued.
Type 1 component is the only one with more blue than red
edges, so there must be at least one such component.

Type 1:

Begin and end in M ′ \M.

But this is also an alternating chain for M, as the first and last
vertex are free for M: they cannot be endpoints any additional
edge in M ′, and so they cannot be endpoints any edge in M (or
that edge would be in M \M ′ and the path would continue).
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Matching algorithm
There is an efficient algorithm that proves an alternating chain
does not exist and otherwise finds one.

Start with a matching M.
(A) Label all free X -vertices by [∗].
(B) If w is any unlabeled Y -vertex joined by an edge in ∆ \M

to a labeled X -vertex v , label w by [v ] (only give one label).
(C) If v is any unlabeled X -vertex joined by an edge in M to a

labeled Y -vertex w , label v by [w ].
(D) Repeat steps (B) and (C) repeatedly until:

(f) a free Y -vertex is labeled; or
(n) nothing more is is labeled.

In case (f), M has an alternating chain, traced backwards from
the free Y -vertex. In case (n), if there is an alternating chain, all
vertices on it have to be labeled, so eventually we label a free
Y -vertex. So, in case (n), M has no alternating chain.
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Matching algorithm: example

Example 22.1. Find the maximal matching in the following
bipartite graph G.
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Matching algorithm: example

We start with an obvious matching and run the algorithm.
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Matching algorithm: example

The algorithm stops at a free Y vertex and therefore we have a
alternating chain . . .

[y1]x1

[y2]x2

[ ∗ ]x3

[ ∗ ]x4

y1[x3]

y2[x3]

y3[x1] STOP

y4

X Y
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Matching algorithm: example

. . . which gives us a larger matching:
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We run the algorithm on this matching to see if it is maximal.
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Matching algorithm: example

The algorithm stops without finding a free Y -vertex. This is a
maximal matching.

x1

[y2]x2

[y1]x3

[ ∗ ]x4

y1[x2]

y2[x4]

y3

y4

X Y

In this case, then, ρ(G) = 3.
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