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Bipartite graph

A bipartite graph has vertices divided into two disjoint sets
X={x1,...,xm}and Y = {xq,..., X}, and a set of edges A
so that every edge is between a vertex in X and a vertex in Y.
(The edges can be oriented or unoriented; it does not matter for
this topic.) For example:

X Y An edge between x; and y; can

X4 Vi be thought of as a possible
match between x; and y;. We
can think of X and Y as sets of

xe % men and women in a
matchmaking situation, as sets

X3 ys of jobs and workers, as sets of
tasks and computer

X4

processors, etc.



Matching in a bipartite graph

A matching in a bipartite graph G = (X, A, Y) is a subset M of
A, such that no two edges of M meet at a single vertex. Here
are two matchings: {(x1,y1), (X3, y3)} and

{(x1,51), (X3, ¥2), (X4, y3)}

X Y

X1 4
X2 Y2
X3 Y3
X4

X Y
X1 Vi
X2 Y2
X3 Y3
X4

In a matching M, vertices which are not part of an edge in M

are called free.



Maximal matching

We want to find a maximal matching M* in the graph G, which
has the largest possible number of edges, i.e., matched pairs:

IM*| = max{|M| : M is a matching} = p(M).

The first thing to observe is that if M is inclusion-maximal (no
edge can be added while preserving the matching condition), it
is not necessarily maximal; see our first matching on the
previous slide. Also, M* is not necessarily unique. In our
example, p(G) = 3, and we have 3 maximal matchings.



This is not a new problem

For a bipartite graph G, we can form the compatibility matrix:

X Y
X1 1 yi|yz2|ys
Xq Q V)
X2 Yo Xo| QO
X3 VARV
X3 V3 X4 V)

X4



This is not a new problem

A matching is exactly the same as a placement of nonattacking

rooks on O’s:
X Y
X4 Y1 Yi|y2|ys
X1 Q
Xo Yo Xo Q
X3 VARV,
X3 Y3 X4 O
X4

We can compute the rook polynomial by eliminating the © in
the second column:

14 5x 4+ 5x% 4+ x(1 +4x 4+ 3x%) =1 4 6x + 9x + 3x°,

so we have 3 maximal matchings. If we just want to determine
p(G) and find one M*, this is not an efficient method.
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Alternating chain

Suppose M is a matching in G = (X, A, Y). Suppose that
Vi, Wy, Vo, Wa, ..., Vi, Wk

is a sequence of distinct vertices such that v; € X, w; € Y for all
i, vi and wy are free, and moreover the successive pairs of
vertices alternate between being connected by edges not in M
and edges in M:

@ Vi —Wy,...,V— W € A\ M;and

@ Wi — Vo,...,Wk_1— Vg€ M.
Then the sequence of vertices together with the edges joining
them in order is an alternating chain.



Alternating chain

Here is an alternating chain for the matching on the left,
beginning at xo and ending at y».

X Y X Y

X )2 X1 Y1
Xo Yo Xo Yo
X3 Y3 X3 Y3

X4 X4



Alternating chain

If M has an alternating chain, then it cannot be maximal,
because we can switch the status of all edges on the chain and

obtain a larger matching.

X Y
X4 )4
X2 Y2
X3 Y3
X4

Even more ...

X Y
X1 Vi
X2 Y2
X3 Y3
X4



Alternating chain

A matching M of G = (X, A, Y) is maximal if and only if it has
no alternating chain.

A\

Proof.

Assume M’ is a matching and |M’| > |M|. We need to find an
alternating chain. Let A* be the set of edges that consist of
edges that are in M or in M’, but not in both, that is,

A* = (M \ M)U(M\ M)

As |M'| > |M|, M\ M| > |[M\ M'|. In the graph (X, A*,Y),
every vertex is an endpoint of at most one edge in M’ \ M and
also of at most one edge in M\ M’. So A* can be partitioned
into paths and cycles of the following four types, with red edges
in M\ M’ and blue in M"\ M.
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Alternating chain

Begin and end in M" \ M.

1

Type 2:

Begin and end in M\ M'.

I

.
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Alternating chain

Begin in M\ M and end in
M\ M, or vice versa.

W

Type 4:

Cycle.

i

.
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Alternating chain

Proof, continued.

Type 1 component is the only one with more blue than red
edges, so there must be at least one such component.

Begin and end in M\ M.

N

But this is also an alternating chain for M, as the first and last
vertex are free for M: they cannot be endpoints any additional

edge in M’, and so they cannot be endpoints any edge in M (or

that edge would be in M\ M’ and the path would continue).

[]
y
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Matching algorithm

There is an efficient algorithm that proves an alternating chain
does not exist and otherwise finds one.

Start with a matching M.
(A) Label all free X-vertices by [+].

(B) If wis any unlabeled Y-vertex joined by an edge in A\ M
to a labeled X-vertex v, label w by [v] (only give one label).
(C) If vis any unlabeled X-vertex joined by an edge in M to a
labeled Y-vertex w, label v by [w].
(D) Repeat steps (B) and (C) repeatedly until:
(f) afree Y-vertex is labeled; or
(n) nothing more is is labeled.

In case (f), M has an alternating chain, traced backwards from
the free Y-vertex. In case (n), if there is an alternating chain, all
vertices on it have to be labeled, so eventually we label a free

Y-vertex. So, in case (n), M has no alternating chain.
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Matching algorithm: example

Example 22.1. Find the maximal matching in the following
bipartite graph G.

X Y

! vm
X2 )7
X3 y3

X4 Ya



Matching algorithm: example

We start with an obvious matching and run the algorithm.

X Y

X1 v%
X2 )Z]
X3 Y3

X4 3Z!



Matching algorithm: example

The algorithm stops at a free Y vertex and therefore we have a
alternating chain . ..

X Y
[y1]xq y1[xa]
[y2]x2 Ya[x3]
[*]Xs ya[x;] STOP

[* X4 Ya



Matching algorithm: example

... which gives us a larger matching:

X Y

Xq Yi
X2 V}@
X3 Y3
X4 3Z!

We run the algorithm on this matching to see if it is maximal.



Matching algorithm: example

The algorithm stops without finding a free Y-vertex. This is a
maximal matching.

X Y
X y1[xe]

[Y2]X2>/Y2 [Xa]

[y11xs Y

[ ]xq ya

In this case, then, p(G) = 3.



