
MAT 16C, Winter 2020

Lecture notes for last week of classes

Note. Final version (March 12, 2020).

We will always make the default choice for the Taylor series to be centered at c = 0. With this
convention, Taylor series and Maclaurin series have the same meaning and can be used interchangeably.
We now list the Taylor series to remember. The first is the series for ex:

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · =

∞∑
n=0

xn

n!
(1)

which converges for all real numbers x, that is, its radius of convergence is R =∞. Next are the series
for sinx and cosx,

sinx = x− x3

3!
+

x5

5!
+ · · · =

∞∑
n=0

(−1)n
x2n+1

(2n + 1)!
,(2)

cosx = 1− x2

2!
+

x4

4!
+ · · · =

∞∑
n=0

(−1)n
x2n

(2n)!
,(3)

which both converge for all real numbers x, which again means that each has radius of convergence is
R =∞. Next is the geometric series

1

1− x
= (1− x)−1 = 1 + x + x2 + x3 + · · · =

∞∑
n=0

xn(4)

which converges for |x| < 1; its radius of convergence is R = 1. We can plug in −x in place of x to get

1

1 + x
= (1 + x)−1 = 1− x + x2 − x3 + · · · =

∞∑
n=0

(−1)nxn,(5)

with the same radius of convergence R = 1, as | − x| = |x|. We can compute the antiderives of both
sides (i.e. we integrate both sides) to get

ln(1 + x) + C = x− x2

2
+

x3

3
− x4

4
+ · · ·

and then plug in x = 0 to get C = 0, so that

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · · =

∞∑
n=1

(−1)n+1x
n

n
,(6)

which converges for |x| < 1. The final series is called binomial series, valid for any power k:

(1 + x)k = 1 + kx− k(k − 1)

2!
x2 +

k(k − 1)(k − 2)

3!
x3 + · · · ,(7)
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which again converges for |x| < 1.
The numbered series are the ones we will use.
The n-th degree Taylor polynomial Pn(x) is the part of the Taylor series (again, by default centered

at 0) up to and including the nth power of x. This is where Taylor series can be useful: the Taylor
polynomial, especially one of high degree is a good approximation for the function if x is small.

Example. Find the 3rd degree Taylor polynomial P3(x) for f(x) = ex.
As

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · ,

we conclude that

P3(x) = 1 + x +
x2

2
+

x3

6
.

Example. Find the 3rd degree Taylor polynomial P3(x) for f(x) =
√

1 + x.
We use the binomial series with k = 1/2 to get

√
1 + x = 1 +

1

2
x−

1
2(12 − 1)

2!
x2 +

1
2(12 − 1)(12 − 1)

3!
x3 + · · ·

= 1 +
1

2
x−

1
2(12 − 1)

2!
x2 +

1
2(12 − 1)(12 − 1)

3!
x3 + · · ·

= 1 +
1

2
x− 1

8
x2 +

1

16
x3 + · · ·

and so

P3(x) = 1 +
1

2
x− 1

8
x2 +

1

16
x3.

Example. Compute

32

2!
+

33

3!
+

34

4!
+ · · · =

∞∑
n=2

3n

n!

We rewrite
∞∑
n=2

3n

n!
=

∞∑
n=0

3n

n!
− 1− 31

1!
= e3 − 1− 3 = e3 − 4.

Example. Find the Taylor series for ln(3x + 4) and its radius of convergence.
We rewrite

ln(3x + 4) = ln

(
4

(
1 +

3

4
x

))
= ln 4 + ln

(
1 +

3

4
x

)
and then replace x by 3

4x in the series for ln(1 + x) to get

ln(3x + 4) = ln 4 + ln

(
1 +

3

4
x

)
= ln 4 +

3

4
x− 1

2

(
3

4

)2

x2 +
1

3

(
3

4

)3

x3 − 1

4

(
3

4

)4

x4 + · · ·

As we replaced x in the series for ln(1+x) by 3
4x, this series converges for |34x| < 1, that is, for |x| < 4

3 .
The radius of convergence is R = 4

3 .
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Example. Find the sum of

3x +
32x2

1!
+

33x3

2!
+

34x4

3!
+ · · ·

For which x does it converge?
We can rewrite the above as follows

3x

(
1 +

3x

1!
+

32x2

2!
+

33x3

3!
+ · · ·

)
and we see that the series in parenthesis is exactly the Taylor series for e3x, and so the answer is 3xe3x.
As there is no restriction of convergence of the series for ex, there is also no restriction on the series
for e3x, and the series converges for all x.

Example. Find the series for (1− x)−2.
We can use the binomial series, but even easier way is to observe that d

dx(1 − x)−1 = (1 − x)−2

and so by differentiating the geometric series we get

(1− x)−2 = 1 + 2x + 3x2 + 4x3 + · · ·

Example. Find the 6th degree Taylor polynomial for f(x) = ex
2
.

We substitute x2 in place of x in the series for ex to get

ex
2

= 1 + x2 +
x4

2!
+

x6

3!
+ · · ·

and so

P6(x) = 1 + x2 +
x4

2
+

x6

6

Example. Use the 4th degree Taylor polynomial to estimate∫ 0.1

0
ex

2
dx

We estimate ∫ 0.1

0
ex

2
dx ≈

∫ 0.1

0
P4(x) dx,

and we know from the previous example that P4(x) = 1 + x2 + x4

2 , so that∫ 0.1

0
P4(x) dx =

∫ 0.1

0

(
1 + x2 +

x4

2

)
dx =

(
x +

x3

3
+

x5

10

)∣∣∣∣x=0.1

x=0

= 0.1 +
(0.1)3

3
+

(0.1)5

10
.

Example. Use the 4th degree Taylor polynomial to estimate∫ 0.5

0
x2 ln(3 + 2x) dx

We write

ln(2 + 3x) = ln 2 + ln

(
1 +

3

2
x

)
= ln 2 +

3

2
x− 1

2

(
3

2
x

)2

+ · · · = ln 2 +
3

2
x− 9

8
x2 + · · ·
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and so

x2 ln(2 + 3x) = ln 2 · x2 +
3

2
x2 − 9

8
x4 + · · ·

and

P4(x) = x2 ln(2 + 3x) = ln 2 · x2 +
3

2
x2 − 9

8
x4.

It follows that ∫ 0.1

0
P4(x) dx =

∫ 0.5

0

(
ln 2 · x2 +

3

2
x2 − 9

8
x4
)

dx

=

(
ln 2 · 1

3
x3 +

3

2
· 1

4
x4 − 9

8
· 1

5
x5
)∣∣∣∣x=0.5

x=0

= ln 2 · 1

3
· 1

8
+

3

2
· 1

4
· 1

16
− 9

8
· 1

5
· 1

32
.

Example. Use the 5th degree Taylor polynomial to estimate∫ 0.2

0

√
x4 + 1 sin(x) dx

We know that (as 3! = 6 and 5! = 120)

sinx = x− 1

6
x3 +

1

120
x5 + · · ·

and √
1 + x4 = 1 +

1

2
x4 + · · ·

In this case we need to multiply the two expressions, omitting all powers of degree at least 6. This
may in general be a bit tedious but in this case it is not a big problem. We get

P5(x) = x− 1

6
x3 +

1

120
x5 +

1

2
x5 = x− 1

6
x3 +

61

120
x5.

It follows that ∫ 0.2

0
P5(x) dx =

(
1

2
· x2 − 1

6
· 1

4
· x4 +

61

120
· 1

6
· x6
)∣∣∣∣x=0.2

x=0

=
1

2
· (0.2)2 − 1

6
· 1

4
· (0.2)4 +

61

120
· 1

6
· (0.2)6.
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