

if you increase sales to 11 radiators a day. The estimated increase in profit is obtained by subtracting the increased cost of \$195 from the increased revenue, leading to an estimated profit increase of  $\$252 - \$195 = \$57$ . ■

**EXAMPLE 6** Marginal rates frequently arise in discussions of tax rates. If your marginal income tax rate is 28% and your income increases by \$1000, you can expect to pay an extra \$280 in taxes. This does not mean that you pay 28% of your entire income in taxes. It just means that at your current income level  $I$ , the rate of increase of taxes  $T$  with respect to income is  $dT/dI = 0.28$ . You will pay \$0.28 in taxes out of every extra dollar you earn. As your income increases, you may land in a higher tax bracket and your marginal rate will increase. ■

### Sensitivity to Change

When a small change in  $x$  produces a large change in the value of a function  $f(x)$ , we say that the function is sensitive to changes in  $x$ . The derivative  $f'(x)$  is a measure of this sensitivity. The function is more sensitive when  $|f'(x)|$  is larger (when the slope of the graph of  $f$  is steeper).

### EXAMPLE 7 Genetic Data and Sensitivity to Change

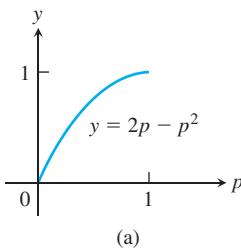
The Austrian monk Gregor Johann Mendel (1822–1884), working with garden peas and other plants, provided the first scientific explanation of hybridization.

His careful records showed that if  $p$  (a number between 0 and 1) is the frequency of the gene for smooth skin in peas (dominant) and  $(1 - p)$  is the frequency of the gene for wrinkled skin in peas, then the proportion of smooth-skinned peas in the next generation will be

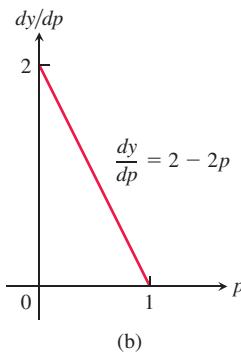
$$y = 2p(1 - p) + p^2 = 2p - p^2.$$

The graph of  $y$  versus  $p$  in Figure 3.22a suggests that the value of  $y$  is more sensitive to a change in  $p$  when  $p$  is small than when  $p$  is large. Indeed, this fact is borne out by the derivative graph in Figure 3.22b, which shows that  $dy/dp$  is close to 2 when  $p$  is near 0 and close to 0 when  $p$  is near 1.

The implication for genetics is that introducing a few more smooth skin genes into a population where the frequency of wrinkled skin peas is large will have a more dramatic effect on later generations than will a similar increase when the population has a large proportion of smooth skin peas. ■



(a)



(b)

**FIGURE 3.22** (a) The graph of  $y = 2p - p^2$ , describing the proportion of smooth-skinned peas in the next generation. (b) The graph of  $dy/dp$  (Example 7).

## EXERCISES 3.4

### Motion Along a Coordinate Line

Exercises 1–6 give the positions  $s = f(t)$  of a body moving on a coordinate line, with  $s$  in meters and  $t$  in seconds.

- Find the body's displacement and average velocity for the given time interval.
- Find the body's speed and acceleration at the endpoints of the interval.
- When, if ever, during the interval does the body change direction?

- $s = t^2 - 3t + 2$ ,  $0 \leq t \leq 2$
- $s = 6t - t^2$ ,  $0 \leq t \leq 6$
- $s = -t^3 + 3t^2 - 3t$ ,  $0 \leq t \leq 3$

- $s = (t^4/4) - t^3 + t^2$ ,  $0 \leq t \leq 3$

- $s = \frac{25}{t^2} - \frac{5}{t}$ ,  $1 \leq t \leq 5$

- $s = \frac{25}{t+5}$ ,  $-4 \leq t \leq 0$

- Particle motion** At time  $t$ , the position of a body moving along the  $s$ -axis is  $s = t^3 - 6t^2 + 9t$  m.

- Find the body's acceleration each time the velocity is zero.
- Find the body's speed each time the acceleration is zero.
- Find the total distance traveled by the body from  $t = 0$  to  $t = 2$ .

**8. Particle motion** At time  $t \geq 0$ , the velocity of a body moving along the horizontal  $s$ -axis is  $v = t^2 - 4t + 3$ .

- Find the body's acceleration each time the velocity is zero.
- When is the body moving forward? Backward?
- When is the body's velocity increasing? Decreasing?

### Free-Fall Applications

**9. Free fall on Mars and Jupiter** The equations for free fall at the surfaces of Mars and Jupiter ( $s$  in meters,  $t$  in seconds) are  $s = 1.86t^2$  on Mars and  $s = 11.44t^2$  on Jupiter. How long does it take a rock falling from rest to reach a velocity of 27.8 m/sec (about 100 km/h) on each planet?

**10. Lunar projectile motion** A rock thrown vertically upward from the surface of the moon at a velocity of 24 m/sec (about 86 km/h) reaches a height of  $s = 24t - 0.8t^2$  m in  $t$  sec.

- Find the rock's velocity and acceleration at time  $t$ . (The acceleration in this case is the acceleration of gravity on the moon.)
- How long does it take the rock to reach its highest point?
- How high does the rock go?
- How long does it take the rock to reach half its maximum height?
- How long is the rock aloft?

**11. Finding  $g$  on a small airless planet** Explorers on a small airless planet used a spring gun to launch a ball bearing vertically upward from the surface at a launch velocity of 15 m/sec. Because the acceleration of gravity at the planet's surface was  $g_s$  m/sec<sup>2</sup>, the explorers expected the ball bearing to reach a height of  $s = 15t - (1/2)g_s t^2$  m  $t$  sec later. The ball bearing reached its maximum height 20 sec after being launched. What was the value of  $g_s$ ?

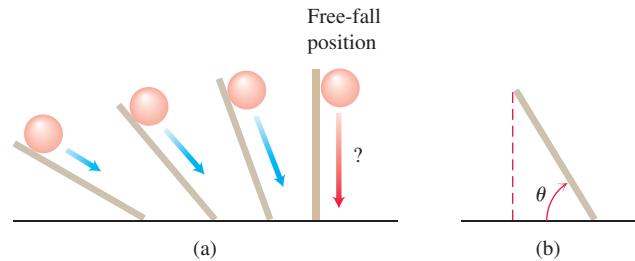
**12. Speeding bullet** A 45-caliber bullet shot straight up from the surface of the moon would reach a height of  $s = 832t - 2.6t^2$  ft after  $t$  sec. On Earth, in the absence of air, its height would be  $s = 832t - 16t^2$  ft after  $t$  sec. How long will the bullet be aloft in each case? How high will the bullet go?

**13. Free fall from the Tower of Pisa** Had Galileo dropped a cannonball from the Tower of Pisa, 179 ft above the ground, the ball's height above the ground  $t$  sec into the fall would have been  $s = 179 - 16t^2$ .

- What would have been the ball's velocity, speed, and acceleration at time  $t$ ?
- About how long would it have taken the ball to hit the ground?
- What would have been the ball's velocity at the moment of impact?

**14. Galileo's free-fall formula** Galileo developed a formula for a body's velocity during free fall by rolling balls from rest down increasingly steep inclined planks and looking for a limiting formula that would predict a ball's behavior when the plank was vertical and the ball fell freely; see part (a) of the accompanying figure. He found that, for any given angle of the plank, the ball's velocity  $t$  sec into motion was a constant multiple of  $t$ . That is, the velocity was given by a formula of the form  $v = kt$ . The value of the constant  $k$  depended on the inclination of the plank.

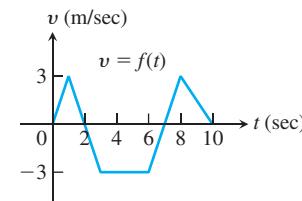
In modern notation—part (b) of the figure—with distance in meters and time in seconds, what Galileo determined by experiment was that, for any given angle  $\theta$ , the ball's velocity  $t$  sec into the roll was  $v = 9.8(\sin \theta)t$  m/sec.



- What is the equation for the ball's velocity during free fall?
- Building on your work in part (a), what constant acceleration does a freely falling body experience near the surface of Earth?

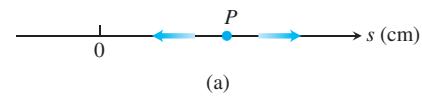
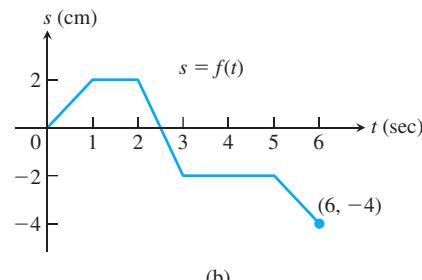
### Understanding Motion from Graphs

**15.** The accompanying figure shows the velocity  $v = ds/dt = f(t)$  (m/sec) of a body moving along a coordinate line.



- When does the body reverse direction?
- When (approximately) is the body moving at a constant speed?
- Graph the body's speed for  $0 \leq t \leq 10$ .
- Graph the acceleration, where defined.

**16.** A particle  $P$  moves on the number line shown in part (a) of the accompanying figure. Part (b) shows the position of  $P$  as a function of time  $t$ .

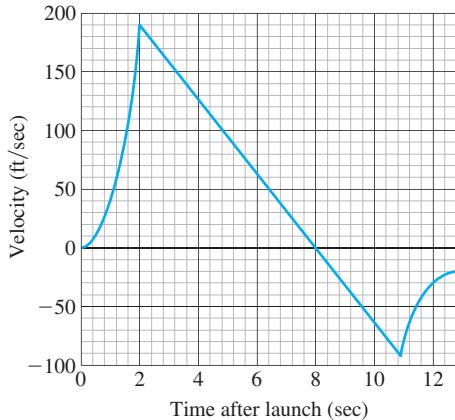


- When is  $P$  moving to the left? Moving to the right? Standing still?
- Graph the particle's velocity and speed (where defined).

**17. Launching a rocket** When a model rocket is launched, the propellant burns for a few seconds, accelerating the rocket upward. After burnout, the rocket coasts upward for a while and then begins to fall. A small explosive charge pops out a parachute shortly after the rocket starts down. The parachute slows the rocket to keep it from breaking when it lands.

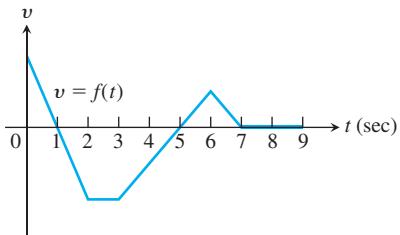
The figure here shows velocity data from the flight of the model rocket. Use the data to answer the following.

- How fast was the rocket climbing when the engine stopped?
- For how many seconds did the engine burn?



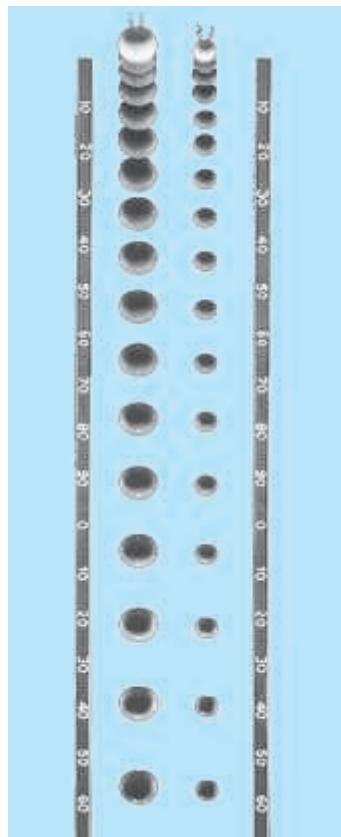
- When did the rocket reach its highest point? What was its velocity then?
- When did the parachute pop out? How fast was the rocket falling then?
- How long did the rocket fall before the parachute opened?
- When was the rocket's acceleration greatest?
- When was the acceleration constant? What was its value then (to the nearest integer)?

**18.** The accompanying figure shows the velocity  $v = f(t)$  of a particle moving on a horizontal coordinate line.



- When does the particle move forward? Move backward? Speed up? Slow down?
- When is the particle's acceleration positive? Negative? Zero?
- When does the particle move at its greatest speed?
- When does the particle stand still for more than an instant?

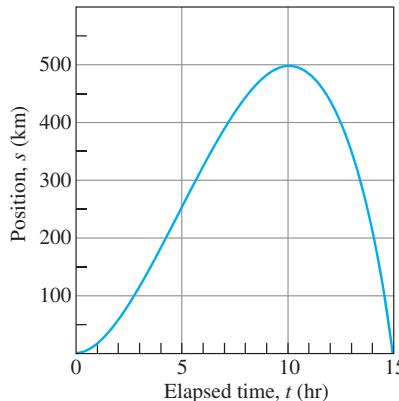
**19. Two falling balls** The multiflash photograph in the accompanying figure shows two balls falling from rest. The vertical rulers are marked in centimeters. Use the equation  $s = 490t^2$  (the free-fall equation for  $s$  in centimeters and  $t$  in seconds) to answer the following questions. (Source: *PSSC Physics*, 2nd ed., Reprinted by permission of Education Development Center, Inc.)



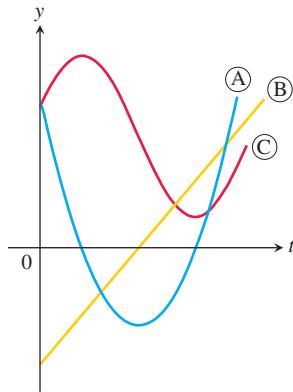
- How long did it take the balls to fall the first 160 cm? What was their average velocity for the period?
- How fast were the balls falling when they reached the 160-cm mark? What was their acceleration then?
- About how fast was the light flashing (flashes per second)?

**20. A traveling truck** The accompanying graph shows the position  $s$  of a truck traveling on a highway. The truck starts at  $t = 0$  and returns 15 h later at  $t = 15$ .

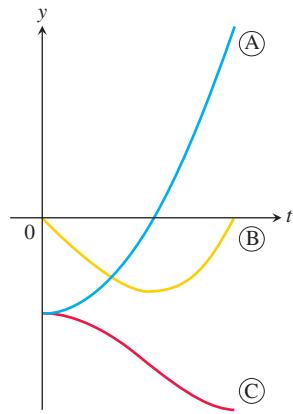
- Use the technique described in Section 3.2, Example 3, to graph the truck's velocity  $v = ds/dt$  for  $0 \leq t \leq 15$ . Then repeat the process, with the velocity curve, to graph the truck's acceleration  $dv/dt$ .
- Suppose that  $s = 15t^2 - t^3$ . Graph  $ds/dt$  and  $d^2s/dt^2$  and compare your graphs with those in part (a).



21. The graphs in the accompanying figure show the position  $s$ , velocity  $v = ds/dt$ , and acceleration  $a = d^2s/dt^2$  of a body moving along a coordinate line as functions of time  $t$ . Which graph is which? Give reasons for your answers.



22. The graphs in the accompanying figure show the position  $s$ , the velocity  $v = ds/dt$ , and the acceleration  $a = d^2s/dt^2$  of a body moving along a coordinate line as functions of time  $t$ . Which graph is which? Give reasons for your answers.



### Economics

23. **Marginal cost** Suppose that the dollar cost of producing  $x$  washing machines is  $c(x) = 2000 + 100x - 0.1x^2$ .

- Find the average cost per machine of producing the first 100 washing machines.
- Find the marginal cost when 100 washing machines are produced.
- Show that the marginal cost when 100 washing machines are produced is approximately the cost of producing one more washing machine after the first 100 have been made, by calculating the latter cost directly.

24. **Marginal revenue** Suppose that the revenue from selling  $x$  washing machines is

$$r(x) = 20,000 \left(1 - \frac{1}{x}\right)$$

dollars.

- Find the marginal revenue when 100 machines are produced.

- Use the function  $r'(x)$  to estimate the increase in revenue that will result from increasing production from 100 machines a week to 101 machines a week.
- Find the limit of  $r'(x)$  as  $x \rightarrow \infty$ . How would you interpret this number?

### Additional Applications

25. **Bacterium population** When a bactericide was added to a nutrient broth in which bacteria were growing, the bacterium population continued to grow for a while, but then stopped growing and began to decline. The size of the population at time  $t$  (hours) was  $b = 10^6 + 10^4t - 10^3t^2$ . Find the growth rates at

- $t = 0$  hours.
- $t = 5$  hours.
- $t = 10$  hours.

26. **Body surface area** A typical male's body surface area  $S$  in square meters is often modeled by the formula  $S = \frac{1}{60} \sqrt{wh}$ , where  $h$  is the height in cm, and  $w$  the weight in kg, of the person. Find the rate of change of body surface area with respect to weight for males of constant height  $h = 180$  cm (roughly 5'9"). Does  $S$  increase more rapidly with respect to weight at lower or higher body weights? Explain.

**T** 27. **Draining a tank** It takes 12 hours to drain a storage tank by opening the valve at the bottom. The depth  $y$  of fluid in the tank  $t$  hours after the valve is opened is given by the formula

$$y = 6 \left(1 - \frac{t}{12}\right)^2 \text{ m.}$$

- Find the rate  $dy/dt$  (m/h) at which the tank is draining at time  $t$ .
- When is the fluid level in the tank falling fastest? Slowest? What are the values of  $dy/dt$  at these times?
- Graph  $y$  and  $dy/dt$  together and discuss the behavior of  $y$  in relation to the signs and values of  $dy/dt$ .

28. **Draining a tank** The number of gallons of water in a tank  $t$  minutes after the tank has started to drain is  $Q(t) = 200(30 - t)^2$ . How fast is the water running out at the end of 10 min? What is the average rate at which the water flows out during the first 10 min?

29. **Vehicular stopping distance** Based on data from the U.S. Bureau of Public Roads, a model for the total stopping distance of a moving car in terms of its speed is

$$s = 1.1v + 0.054v^2,$$

where  $s$  is measured in ft and  $v$  in mph. The linear term  $1.1v$  models the distance the car travels during the time the driver perceives a need to stop until the brakes are applied, and the quadratic term  $0.054v^2$  models the additional braking distance once they are applied. Find  $ds/dv$  at  $v = 35$  and  $v = 70$  mph, and interpret the meaning of the derivative.

30. **Inflating a balloon** The volume  $V = (4/3)\pi r^3$  of a spherical balloon changes with the radius.

- At what rate ( $\text{ft}^3/\text{ft}$ ) does the volume change with respect to the radius when  $r = 2$  ft?
- By approximately how much does the volume increase when the radius changes from 2 to 2.2 ft?

**31. Airplane takeoff** Suppose that the distance an aircraft travels along a runway before takeoff is given by  $D = (10/9)t^2$ , where  $D$  is measured in meters from the starting point and  $t$  is measured in seconds from the time the brakes are released. The aircraft will become airborne when its speed reaches 200 km/h. How long will it take to become airborne, and what distance will it travel in that time?

**32. Volcanic lava fountains** Although the November 1959 Kilauea Iki eruption on the island of Hawaii began with a line of fountains along the wall of the crater, activity was later confined to a single vent in the crater's floor, which at one point shot lava 1900 ft straight into the air (a Hawaiian record). What was the lava's exit velocity in feet per second? In miles per hour? (Hint: If  $v_0$  is the exit velocity of a particle of lava, its height  $t$  sec later will be  $s = v_0 t - 16t^2$  ft. Begin by finding the time at which  $ds/dt = 0$ . Neglect air resistance.)

#### Analyzing Motion Using Graphs

**T** Exercises 33–36 give the position function  $s = f(t)$  of an object moving along the  $s$ -axis as a function of time  $t$ . Graph  $f$  together with the

velocity function  $v(t) = ds/dt = f'(t)$  and the acceleration function  $a(t) = d^2s/dt^2 = f''(t)$ . Comment on the object's behavior in relation to the signs and values of  $v$  and  $a$ . Include in your commentary such topics as the following:

- When is the object momentarily at rest?
- When does it move to the left (down) or to the right (up)?
- When does it change direction?
- When does it speed up and slow down?
- When is it moving fastest (highest speed)? Slowest?
- When is it farthest from the axis origin?

33.  $s = 200t - 16t^2$ ,  $0 \leq t \leq 12.5$  (a heavy object fired straight up from Earth's surface at 200 ft/sec)

34.  $s = t^2 - 3t + 2$ ,  $0 \leq t \leq 5$

35.  $s = t^3 - 6t^2 + 7t$ ,  $0 \leq t \leq 4$

36.  $s = 4 - 7t + 6t^2 - t^3$ ,  $0 \leq t \leq 4$

## 3.5 Derivatives of Trigonometric Functions

Many phenomena of nature are approximately periodic (electromagnetic fields, heart rhythms, tides, weather). The derivatives of sines and cosines play a key role in describing periodic changes. This section shows how to differentiate the six basic trigonometric functions.

### Derivative of the Sine Function

To calculate the derivative of  $f(x) = \sin x$ , for  $x$  measured in radians, we combine the limits in Example 5a and Theorem 7 in Section 2.4 with the angle sum identity for the sine function:

$$\sin(x + h) = \sin x \cos h + \cos x \sin h.$$

If  $f(x) = \sin x$ , then

$$\begin{aligned} f'(x) &= \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} = \lim_{h \rightarrow 0} \frac{\sin(x + h) - \sin x}{h} && \text{Derivative definition} \\ &= \lim_{h \rightarrow 0} \frac{(\sin x \cos h + \cos x \sin h) - \sin x}{h} && \text{Identity for } \sin(x + h) \\ &= \lim_{h \rightarrow 0} \frac{\sin x(\cos h - 1) + \cos x \sin h}{h} \\ &= \lim_{h \rightarrow 0} \left( \sin x \cdot \frac{\cos h - 1}{h} \right) + \lim_{h \rightarrow 0} \left( \cos x \cdot \frac{\sin h}{h} \right) \\ &= \sin x \cdot \underbrace{\lim_{h \rightarrow 0} \frac{\cos h - 1}{h}}_{\text{limit 0}} + \cos x \cdot \underbrace{\lim_{h \rightarrow 0} \frac{\sin h}{h}}_{\text{limit 1}} \\ &= \sin x \cdot 0 + \cos x \cdot 1 = \cos x. && \text{Example 5a and} \\ &&& \text{Theorem 7, Section 2.4} \end{aligned}$$

**The derivative of the sine function is the cosine function:**

$$\frac{d}{dx}(\sin x) = \cos x.$$