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Chapter 3 Derivatives

EXERCISES X3

Derivative Calculations

In Exercises 1-8, given y = f(u) and

dy/dx = f'(g(x))g' (x).
L.y=6u—9 u=(1/2x*
3. y=sinu, u=3x+1
5.y=\/ﬁ, u = sinx

2

7.y =tanu, u = mx

2.
4.
6.

8.

u = gx), find dy/dx =

y=23 wu=8—1
y=cosu, u=e*
y=sinu, u=x—CcosSx
1
y=-—secu, u=y+7x

In Exercises 9-22, write the function in the form y = f(u) and
u = g(x). Then find dy/dx as a function of x.

9. y=2x+ 1) 10. y = (4 — 3x)°
-7 Vi -10

— _x — (X

11. y = (1 7) 12. y ( > 1)
x? 1\

13. y = g% 4. y= V32 —4x + 6
15. y = sec(tan x) 16. y = cot (77 - )1;)
17. y = tan’x 18. y = 5cos*x
19. y = ¢ 20. y = ¥
2. y =" 22, y = l4Vata)
Find the derivatives of the functions in Exercises 23-50.
23. p=V3 -1t 24, g =V2r — 12

44 _ (3w 3t
25.s—3ﬂ_s1n3t+5ﬂ_0055t 26. s—s1n< > ) +cos< 2 )
27. r = (csc B + cotf)! 28. r = 6(sec @ — tan 0)/2
29. y = x*sin*x + xcos2x  30. y = %sin’5x - ;—Ccos3x

1 1y
3Ly = {g6x - 2)% + (4 - 7)

2
8

33,y = (4x + ) + 13
35y =xe* +
37. y = (x2 — 2x + 2)e>?

32. y=(5 —2x)’3+l(;+ 1

39. h(x) = xtan(2Vx) + 7

41. f(x) = V7 + xsecx

. 2

45. r = sin(0?)cos (20)

47. g = sin< ! >
' Vit
49. y = cos(e’”z)

242

)

34.
36.
38.

40.

42,

44.

46.

48.

50.

y=2x — 57 '(x* — 5x)°
y = (1 + 2x)e >
y = (9x% — 6x + 2)e*

k(x) = x?sec <%)

_ _tan 3x
s =y

(1 +sin3t\"
g(’)‘( 3—2;)

r= sec\/étan (é)

— cof sin ¢
q = cot| = —

y = 0% %cos 50

In Exercises 51-70, find dy/dr.

51. y = sin’(wt — 2) 52. y = sec’wt

53. y=(1 + cos2)* 54. y = (1 + cot(t/2))2

55. y = (ttan £)'° 56. y = (/*sin "3

57. y = ecosz(mfl) 58. y = (esin(t/2))3
(AN _(3t—4\"

.y = (t3 - 4t) 60y = (51 + 2)

61. y = sin(cos (2t — 5)) 62. y = cos (5 sin (%))

3
t 1
63. y = (1 + tan4(ﬁ)) 64. y = 6(1 + c0s2(7t))3
65. y = V1 + cos(r?) 66. y 4sin( V1 o+ \/i)

67. y = tan®(sin® 1) 68. y = cos*(sec?3t)

\/3z+ V2+VI1—1t

69. y = 3t(2¢> — 5)* 70. y =
Second Derivatives
Find y” in Exercises 71-78.
1 3
71.y=(1+}) 72. y = (1 - V)
1 . X
73. y = §cot(3x -1 74. y = 9tan 3
75. y = x(2x + 1)* 76. y = x2(x* — 1)°
77. y =" + 5x 78. y = sin(x2¢")

For each of the following functions, solve both f'(x) = 0 and
f"(x) = 0 for x.

79. f(x) = x(x — 4)}

80. f(x) =sec’x —2tanx for 0 =x =27

Finding Derivative Values
In Exercises 81-86, find the value of (f ° g)’ at the given value of x.
81. fw) =w + 1, u= gk = Va,

1
1 —x’

x=1

82.f(u)=1—%, u=gkx) = x=-1

83. f(u)=cot717—g, u=gkx) =5Vx, x=1

84. fw) =u+ ——, u=gk)=mx, x=1/4
cos® u
85. fi) = =2 u=g =102 +x+1, x=0
) w+ 1 § ’

TR |
86.f(u)—(u+1>, u—g(x)—x2 I, x=-1
87. Assume that f'(3) = —1,8'(2) = 5,¢(2) = 3, and y = f(g(x)).
What is y" at x = 2?

88. If r = sin(f(1)), f(0) = /3, and f'(0) = 4, then what is dr/dt
att = 0?



89. Suppose that functions f and g and their derivatives with respect

90.

91.
92.

to x have the following values at x = 2 and x = 3.

x Fx) g(x) f'(x) g'(x)
2 8 2 1/3 -3
3 3 —4 27 5

Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. 2f(x), x=2 b. f(x) + gx), x =3
¢ f-gkx), x=3 d. f(x)/gx), x=2
e f(g), x=2 f. Vfkx), x=2

g 1/g%x), x=3 h. V%) + &x), x=2

Suppose that the functions f and g and their derivatives with
respect to x have the following values at x = 0 and x = 1.

x fx) g f'(x) g'(x)
0 1 1 5 1/3
3 -4 -1/3  -8/3

Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. S5f(x) —gx), x=1 b. fX)gx), x=0
f(x) _ _

C. g(x)—-‘rl’ x =1 d. f(g(x)), x=0

e. g(fx), x=0 f. "+ ) ox=1

g fx+g), x=0

Find ds/dt when 6 = 37 /2 if s = cos6 and df/dt = 5.
Find dy/dt when x = 1if y = x> + 7x — 5 and dx/dt = 1/3.

Theory and Examples

‘What happens if you can write a function as a composition in different
ways? Do you get the same derivative each time? The Chain Rule
says you should. Try it with the functions in Exercises 93 and 94.

93.

94.

95.
96.
97.

Find dy/dx if y = x by using the Chain Rule with y as a compo-
sition of

a. y= /5 +7 and u=5x— 35
b. y=1+ (1/u) and u=1/(x—1).

Find dy/dx if y = x*? by using the Chain Rule with y as a com-
position of

and u = Vx

b. y=Vu and u=x.

Find the tangentto y = ((x — 1)/(x + 1))?>at x = 0.
Find the tangent to y = Vxr—x+Tatx =2

a. Find the tangent to the curve y = 2 tan(mx/4) atx = 1.

a. y=u

b. Slopes on a tangent curve What is the smallest value
the slope of the curve can ever have on the interval
—2 < x < 27? Give reasons for your answer.
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98. Slopes on sine curves

99.

100.

101.

102.

a. Find equations for the tangents to the curves y = sin 2x and
y = —sin(x/2) at the origin. Is there anything special about
how the tangents are related? Give reasons for your answer.

b. Can anything be said about the tangents to the
curves y = sinmx and y = —sin(x/m) at the origin
(m a constant # 0)? Give reasons for your answer.

c. For a given m, what are the largest values the slopes of the
curves y = sin mx and y = —sin(x/m) can ever have? Give
reasons for your answer.

d. The function y = sin x completes one period on the interval
[0, 27 ], the function y = sin 2x completes two periods,
the function y = sin(x/2) completes half a period, and
so on. Is there any relation between the number of peri-
ods y = sin mx completes on [0, 27 ] and the slope of
the curve y = sin mx at the origin? Give reasons for your
answer.

Running machinery too fast Suppose that a piston is moving
straight up and down and that its position at time ¢ sec is

s = Acos (2mbt),

with A and b positive. The value of A is the amplitude of the mo-
tion, and b is the frequency (number of times the piston moves up
and down each second). What effect does doubling the frequency
have on the piston’s velocity, acceleration, and jerk? (Once you
find out, you will know why some machinery breaks when you
run it too fast.)

Temperatures in Fairbanks, Alaska The graph in the accom-
panying figure shows the average Fahrenheit temperature in
Fairbanks, Alaska, during a typical 365-day year. The equation
that approximates the temperature on day x is

— 374in| 27 (4 —
y = 37s1n[365(x 101)} + 25

and is graphed in the accompanying figure.
a. On what day is the temperature increasing the fastest?

b. About how many degrees per day is the temperature increas-
ing when it is increasing at its fastest?
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Particle motion The position of a particle moving along a
coordinate line is s = V1 + 4¢, with s in meters and ¢ in sec-
onds. Find the particle’s velocity and acceleration at = 6 sec.

Constant acceleration Suppose that the velocity of a falling
body is v = kVsm/sec (k a constant) at the instant the body
has fallen s m from its starting point. Show that the body’s accel-
eration is constant.
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103.

104.

105.

106.

107.

108.

Chapter 3 Derivatives

Falling meteorite The velocity of a heavy meteorite entering
Earth’s atmosphere is inversely proportional to Vs when it is s
km from Earth’s center. Show that the meteorite’s acceleration
is inversely proportional to 2.

Particle acceleration A particle moves along the x-axis with
velocity dx/dt = f(x). Show that the particle’s acceleration is
FOf ().

Temperature and the period of a pendulum For oscillations
of small amplitude (short swings), we may safely model the rela-
tionship between the period T and the length L of a simple pen-

dulum with the equation
T = 277\/5,

where g is the constant acceleration of gravity at the pendulum’s
location. If we measure g in centimeters per second squared, we
measure L in centimeters and 7 in seconds. If the pendulum is
made of metal, its length will vary with temperature, either in-
creasing or decreasing at a rate that is roughly proportional to L.
In symbols, with u being temperature and k the proportionality
constant,

dL _

E_kL'

Assuming this to be the case, show that the rate at which the
period changes with respect to temperature is k7/2.

Chain Rule Suppose that f(x) = x* and g(x) = |x|. Then the
compositions

(fe)) = [x[>=x and (gofNHx) = |[¥*| =
are both differentiable at x = 0 even though g itself is not difter-
entiable at x = 0. Does this contradict the Chain Rule? Explain.

The derivative of sin 2x Graph the function y = 2cos2x for
—2 = x = 3.5. Then, on the same screen, graph

sin 2(x + h) — sin 2x
h

for h = 1.0, 0.5, and 0.2. Experiment with other values of 4, in-
cluding negative values. What do you see happening as 7 — 0?
Explain this behavior.

The derivative of cos(x?) Graph y = —2xsin(x?) for —2 <
x = 3. Then, on the same screen, graph

_cos((x + h)?) — cos (x?)
N h

for h = 1.0, 0.7, and 0.3. Experiment with other values of A.
What do you see happening as 4 — 0? Explain this behavior.

Using the Chain Rule, show that the Power Rule (d/dx)x* = nx""!
holds for the functions x" in Exercises 109 and 110.

109.
111.

x4 =V

Consider the function

110. /4 = VxVix

112.

113.

a. Show that f is continuous at x = 0.
b. Determine f' for x # 0.
c. Show that f is not differentiable at x = 0.

xzcos(%), x#0

0, x=0

Consider the function

fe) =

a. Show that f is continuous at x = 0.

b. Determine f' for x # 0.

c. Show that f is differentiable at x = 0.
d. Show that f’ is not continuous at x = 0.
Verify each of the following statements.

a. If fis even, then f is odd.

b. If fis odd, then f’ is even.

COMPUTER EXPLORATIONS
Trigonometric Polynomials

114.

115.

As the accompanying figure shows, the trigonometric “polyno-
mial”

s = f(r) = 0.78540 — 0.63662 cos 2t — 0.07074 cos 6¢
— 0.02546 cos 10t — 0.01299 cos 14¢

gives a good approximation of the sawtooth function s = g(¢) on
the interval [ —r, 7 ]. How well does the derivative of f approxi-
mate the derivative of g at the points where dg/dt is defined? To
find out, carry out the following steps.

a. Graph dg/dt (where defined) over [—, 7 ].

b. Find df/dt.

c. Graph df/dt. Where does the approximation of dg/dt by
df /dr seem to be best? Least good? Approximations by
trigonometric polynomials are important in the theories of

heat and oscillation, but we must not expect too much of
them, as we see in the next exercise.

N

5 = g0
s =50
—

—ar O| T

(Continuation of Exercise 114.) In Exercise 114, the trigonomet-
ric polynomial f(7) that approximated the sawtooth function g(#)
on [—ar, 7 | had a derivative that approximated the derivative of
the sawtooth function. It is possible, however, for a trigonomet-
ric polynomial to approximate a function in a reasonable way
without its derivative approximating the function’s derivative at
all well. As a case in point, the trigonometric “polynomial”

s = h(t) = 1.2732 sin 2t + 0.4244 sin 6¢ + 0.25465 sin 10z
+ 0.18189 sin 14¢ + 0.14147 sin 18¢



