
166 Chapter 3 Derivatives

Derivative Calculations
In Exercises 1–8, given y = ƒ(u) and u = g(x), find dy>dx =
dy>dx = ƒ′(g(x))g′(x).

1. y = 6u - 9, u = (1>2)x4 2. y = 2u3, u = 8x - 1

3. y = sin u, u = 3x + 1 4. y = cos u, u = e-x

5. y = 2u , u = sin x 6. y = sin u, u = x - cos x

7. y = tan u, u = px2 8. y = -sec u, u = 1
x + 7x

In Exercises 9–22, write the function in the form y = ƒ(u) and 
u = g(x). Then find dy>dx as a function of x.

 9. y = (2x + 1)5 10. y = (4 - 3x)9

11. y = a1 - x
7
b

-7

 12. y = a2x
2

- 1b
-10

13. y = ax
2

8
+ x - 1

xb
4

 14. y = 23x2 - 4x + 6

15. y = sec (tan x) 16. y = cot ap - 1
xb

17. y = tan3 x 18. y = 5 cos-4 x

19. y = e-5x 20. y = e2x>3

21. y = e5 - 7x 22. y = e142x + x22

Find the derivatives of the functions in Exercises 23–50.

23. p = 23 - t 24. q = 23 2r - r2

25. s = 4
3p

 sin 3t + 4
5p

 cos 5t 26. s = sin a3pt
2
b + cos a3pt

2
b

27. r = (csc u + cot u)-1 28. r = 6 (sec u - tan u)3>2

29. y = x2 sin4 x + x cos-2 x 30. y = 1
x sin-5 x - x

3
 cos3 x

 31. y = 1
18

 (3x - 2)6 + a4 - 1
2x2b

-1

32. y = (5 - 2x)-3 + 1
8

 a2x + 1b
4

33. y = (4x + 3)4(x + 1)-3 34. y = (2x - 5)-1(x2 - 5x)6

35. y = xe-x + ex3
 36. y = (1 + 2x)e-2x

37. y = (x2 - 2x + 2)e5x>2 38. y = (9x2 - 6x + 2)ex3

39. h(x) = x tan 121x2 + 7 40. k(x) = x2 sec a1xb

41. ƒ(x) = 27 + x sec x 42. g(x) = tan 3x
(x + 7)4

43. ƒ(u) = a sin u
1 + cos u

b
2

 44. g(t) = a1 + sin 3t
3 - 2t

b
-1

45. r = sin (u2) cos (2u) 46. r = sec2u tan a1
u
b

47. q = sin a t

2t + 1
b  48. q = cotasin t

t b
49. y = cos 1e-u22 50. y = u3e-2u cos 5u

In Exercises 51–70, find dy>dt.

 51. y = sin2 (pt - 2) 52. y = sec2 pt

53. y = (1 + cos 2t)-4 54. y = (1 + cot (t>2))-2

55. y = (t tan t)10 56. y = (t-3>4 sin t)4>3

57. y = ecos2 (pt - 1) 58. y = (esin (t>2))3

59. y = a t2

t3 - 4t
b

3

 60. y = a3t - 4
5t + 2

b
-5

61. y = sin (cos (2t - 5)) 62. y = cos a5 sin a t
3
b b

63. y = a1 + tan4 a t
12
b b

3

 64. y = 1
6

 11 + cos2 (7t)23
65. y = 21 + cos (t2) 66. y = 4 sin 121 + 1t2
67. y = tan2 (sin3 t)  68. y = cos4 (sec2 3t)

69. y = 3t (2t2 - 5)4 70. y = 43t + 32 + 21 - t

Second Derivatives
Find y″ in Exercises 71–78.

 71. y = a1 + 1
xb

3

 72. y = 11 - 1x2-1

 73. y = 1
9

 cot (3x - 1) 74. y = 9 tan ax
3
b

 75. y = x (2x + 1)4 76. y = x2 (x3 - 1)5

 77. y = ex2 + 5x 78. y = sin (x2ex)

For each of the following functions, solve both ƒ′(x) = 0 and 
ƒ″(x) = 0 for x.

 79. ƒ(x) = x(x - 4)3

 80. ƒ(x) = sec2 x - 2 tan x for 0 … x … 2p

Finding Derivative Values
In Exercises 81–86, find the value of (ƒ ∘ g)′ at the given value of x.

 81. ƒ(u) = u5 + 1, u = g(x) = 1x, x = 1

 82. ƒ(u) = 1 - 1
u , u = g(x) = 1

1 - x
, x = -1

 83. ƒ(u) = cot 
pu
10

, u = g(x) = 51x, x = 1

 84. ƒ(u) = u + 1
cos2 u

, u = g(x) = px, x = 1>4

 85. ƒ(u) = 2u
u2 + 1

, u = g(x) = 10x2 + x + 1, x = 0

 86. ƒ(u) = au - 1
u + 1

b
2

, u = g(x) = 1
x2 - 1, x = -1

 87. Assume that ƒ′(3) = -1, g′(2) = 5, g(2) = 3, and y = ƒ(g(x)). 
What is y′ at x = 2?

 88. If r = sin (ƒ(t)), ƒ(0) = p>3, and ƒ′(0) = 4, then what is dr>dt 
at t = 0?

EXERCISES 3.6
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3.6  The Chain Rule 167

98. Slopes on sine curves

a. Find equations for the tangents to the curves y = sin 2x and 
y = -sin (x>2) at the origin. Is there anything special about 
how the tangents are related? Give reasons for your answer.

b. Can anything be said about the tangents to the 
curves y = sin mx and y = -sin (x>m) at the origin 
(m a constant ≠ 0)? Give reasons for your answer.

c. For a given m, what are the largest values the slopes of the 
curves y = sin mx and y = -sin (x>m) can ever have? Give 
reasons for your answer.

d. The function y = sin x completes one period on the interval 
30, 2p4 , the function y = sin 2x completes two periods, 
the function y = sin (x>2) completes half a period, and 
so on. Is there any relation between the number of peri-
ods y = sin mx completes on 30, 2p4  and the slope of 
the curve y = sin mx at the origin? Give reasons for your 
answer.

 99. Running machinery too fast Suppose that a piston is moving 
straight up and down and that its position at time t sec is

s = A cos (2pbt),

with A and b positive. The value of A is the amplitude of the mo-
tion, and b is the frequency (number of times the piston moves up 
and down each second). What e�ect does doubling the frequency 
have on the piston’s velocity, acceleration, and jerk? (Once you 
find out, you will know why some machinery breaks when you 
run it too fast.)

 100. Temperatures in Fairbanks, Alaska The graph in the accom-
panying figure shows the average Fahrenheit temperature in 
Fairbanks, Alaska, during a typical 365-day year. The equation 
that approximates the temperature on day x is

y = 37 sin c 2p
365

 (x - 101) d + 25

and is graphed in the accompanying figure.

a. On what day is the temperature increasing the fastest?

b. About how many degrees per day is the temperature increas-
ing when it is increasing at its fastest?
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101. Particle motion The position of a particle moving along a 
coordinate line is s = 21 + 4t, with s in meters and t in sec-
onds. Find the particle’s velocity and acceleration at t = 6 sec.

102. Constant acceleration Suppose that the velocity of a falling 
body is y = k1s m>sec (k a constant) at the instant the body 
has fallen s m from its starting point. Show that the body’s accel-
eration is constant.

 89. Suppose that functions ƒ and g and their derivatives with respect 
to x have the following values at x = 2 and x = 3.

x ƒ(x) g(x) ƒ′(x) g′(x)

2  8     2  1>3  -3

3  3  -4  2p     5

  Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. 2ƒ(x), x = 2 b. ƒ(x) + g(x), x = 3

c. ƒ(x) # g(x), x = 3 d. ƒ(x)>g(x), x = 2

e. ƒ(g(x)), x = 2 f. 2ƒ(x), x = 2

g. 1>g2(x), x = 3 h. 2ƒ2(x) + g2(x), x = 2

90. Suppose that the functions ƒ and g and their derivatives with 
respect to x have the following values at x = 0 and x = 1.

x ƒ(x) g(x)  ƒ′(x)  g′(x)

0  1     1         5     1>3
1  3  -4  -1>3  -8>3

 Find the derivatives with respect to x of the following combina-
tions at the given value of x.
a. 5ƒ(x) - g(x), x = 1 b. ƒ(x)g3(x), x = 0

c. 
ƒ(x)

g(x) + 1
, x = 1 d. ƒ(g(x)), x = 0

e. g(ƒ(x)), x = 0 f. (x11 + ƒ(x))-2, x = 1

g. ƒ(x + g(x)), x = 0

91. Find ds>dt when u = 3p>2 if s = cos u and du>dt = 5.

 92. Find dy>dt when x = 1 if y = x2 + 7x - 5 and dx>dt = 1>3.

Theory and Examples
What happens if you can write a function as a composition in different 
ways? Do you get the same derivative each time? The Chain Rule 
says you should. Try it with the functions in Exercises 93 and 94.

 93. Find dy>dx if y = x by using the Chain Rule with y as a compo-
sition of

a. y = (u>5) + 7 and u = 5x - 35

b. y = 1 + (1>u) and u = 1>(x - 1).

 94. Find dy>dx if y = x3>2 by using the Chain Rule with y as a com-
position of

a. y = u3 and u = 1x

b. y = 1u and u = x3.

 95. Find the tangent to y = ((x - 1)>(x + 1))2 at x = 0.

96. Find the tangent to y = 2x2 - x + 7 at x = 2.

97. a.  Find the tangent to the curve y = 2 tan (px>4) at x = 1.

b. Slopes on a tangent curve What is the smallest value 
the slope of the curve can ever have on the interval 
-2 6 x 6 2? Give reasons for your answer.
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a.	 Show that ƒ is continuous at x = 0.

b.	 Determine ƒ′ for x ≠ 0.

c.	 Show that ƒ is not differentiable at x = 0.

	112.	 Consider the function

ƒ(x) = • x2 cos a2xb , x ≠ 0

        0, x = 0

a.	 Show that ƒ is continuous at x = 0.

b.	 Determine ƒ′ for x ≠ 0.

c.	 Show that ƒ is differentiable at x = 0.

d.	 Show that ƒ′ is not continuous at x = 0.

	113.	 Verify each of the following statements.

a.	 If ƒ is even, then ƒ′ is odd.

b.	 If ƒ is odd, then ƒ′ is even.

Computer Explorations
Trigonometric Polynomials

	114.	 As the accompanying figure shows, the trigonometric “polyno-
mial”

 s = ƒ(t) = 0.78540 - 0.63662 cos 2t - 0.07074 cos 6t

 -  0.02546 cos 10t - 0.01299 cos 14t

gives a good approximation of the sawtooth function s = g(t) on 
the interval 3-p, p4 . How well does the derivative of ƒ approxi-
mate the derivative of g at the points where dg>dt is defined? To 
find out, carry out the following steps.

a.	 Graph dg>dt (where defined) over 3-p, p4 .
b.	 Find dƒ>dt.

c.	 Graph dƒ>dt. Where does the approximation of dg>dt by 
dƒ>dt seem to be best? Least good? Approximations by 
trigonometric polynomials are important in the theories of 
heat and oscillation, but we must not expect too much of 
them, as we see in the next exercise.

t

s

0−p p

2
p

s = g(t)

s = f (t)

	115.	 (Continuation of Exercise 114.) In Exercise 114, the trigonomet-
ric polynomial ƒ(t) that approximated the sawtooth function g(t) 
on 3-p, p4  had a derivative that approximated the derivative of 
the sawtooth function. It is possible, however, for a trigonomet-
ric polynomial to approximate a function in a reasonable way 
without its derivative approximating the function’s derivative at 
all well. As a case in point, the trigonometric “polynomial”

 s = h(t) = 1.2732 sin 2t + 0.4244 sin 6t + 0.25465 sin 10t

 + 0.18189 sin 14t + 0.14147 sin 18t

	103.	 Falling meteorite  The velocity of a heavy meteorite entering 
Earth’s atmosphere is inversely proportional to 2s when it is s 
km from Earth’s center. Show that the meteorite’s acceleration 
is inversely proportional to s2.

	104.	 Particle acceleration  A particle moves along the x-axis with 
velocity dx>dt = ƒ(x). Show that the particle’s acceleration is 
ƒ(x)ƒ′(x).

	105.	 Temperature and the period of a pendulum  For oscillations 
of small amplitude (short swings), we may safely model the rela-
tionship between the period T and the length L of a simple pen-
dulum with the equation

T = 2pA
L
g ,

where g is the constant acceleration of gravity at the pendulum’s 
location. If we measure g in centimeters per second squared, we 
measure L in centimeters and T in seconds. If the pendulum is 
made of metal, its length will vary with temperature, either in-
creasing or decreasing at a rate that is roughly proportional to L. 
In symbols, with u being temperature and k the proportionality 
constant,

dL
du

= kL.

	 	 Assuming this to be the case, show that the rate at which the 
period changes with respect to temperature is kT>2.

	106.	 Chain Rule  Suppose that ƒ(x) = x2 and g(x) = � x � . Then the 
compositions

(ƒ ∘ g)(x) = � x �2 = x2 and (g ∘ ƒ)(x) = � x2 � = x2

are both differentiable at x = 0 even though g itself is not differ-
entiable at x = 0. Does this contradict the Chain Rule? Explain.

	107.	 The derivative of sin 2x  Graph the function y = 2 cos 2x for 
-2 … x … 3.5. Then, on the same screen, graph

y =
sin 2(x + h) - sin 2x

h

for h = 1.0, 0.5, and 0.2. Experiment with other values of h, in-
cluding negative values. What do you see happening as h S 0? 
Explain this behavior.

	108.	 The derivative of cos (x2)  Graph y = -2x sin (x2) for -2 …  
x … 3. Then, on the same screen, graph

y =
cos ((x + h)2) - cos (x2)

h

for h = 1.0, 0.7, and 0.3. Experiment with other values of h. 
What do you see happening as h S 0? Explain this behavior.

Using the Chain Rule, show that the Power Rule (d>dx)xn = nxn - 1 
holds for the functions xn in Exercises 109 and 110.

	109.	 x1>4 = 21x	 110.	 x3>4 = 2x1x

	111.	 Consider the function

ƒ(x) = • x sin a1xb , x 7 0

      0, x … 0

T
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