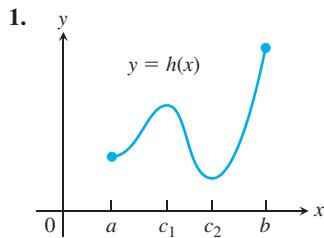
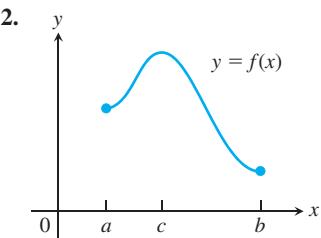
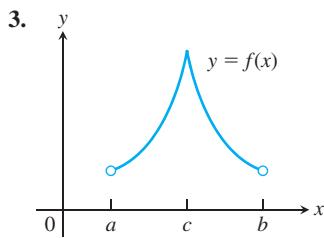
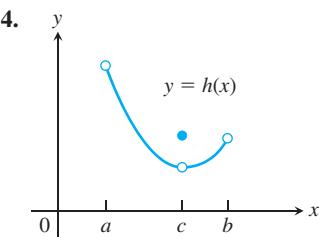
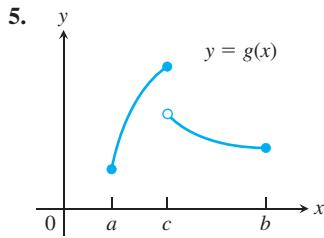
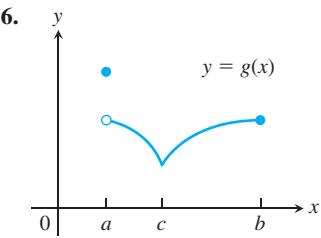
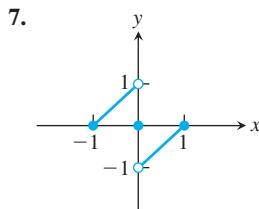
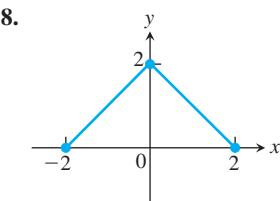
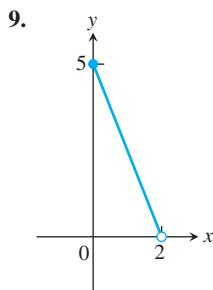
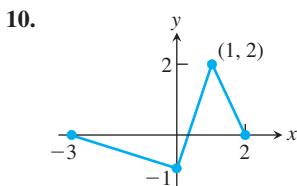


EXERCISES **4.1**
Finding Extrema from Graphs

In Exercises 1–6, determine from the graph whether the function has any absolute extreme values on $[a, b]$. Then explain how your answer is consistent with Theorem 1.



In Exercises 7–10, find the absolute extreme values and where they occur.

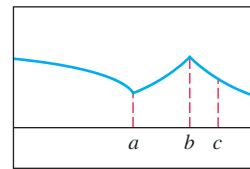
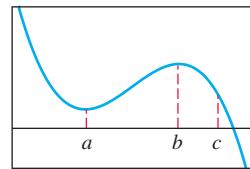
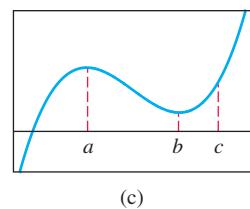
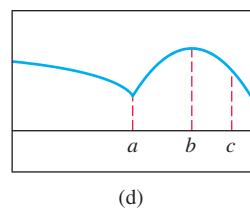


In Exercises 11–14, match the table with a graph.

x	$f'(x)$
a	0
b	0
c	5

x	$f'(x)$
a	does not exist
b	0
c	-2

x	$f'(x)$
a	0
b	-5
c	-1.7



In Exercises 15–20, sketch the graph of each function and determine whether the function has any absolute extreme values on its domain. Explain how your answer is consistent with Theorem 1.

15. $f(x) = |x|, -1 < x < 2$

16. $y = \frac{6}{x^2 + 2}, -1 < x < 1$

17. $g(x) = \begin{cases} -x, & 0 \leq x < 1 \\ x - 1, & 1 \leq x \leq 2 \end{cases}$

18. $h(x) = \begin{cases} \frac{1}{x}, & -1 \leq x < 0 \\ \sqrt{x}, & 0 \leq x \leq 4 \end{cases}$

19. $y = 3 \sin x, 0 < x < 2\pi$

20. $f(x) = \begin{cases} x + 1, & -1 \leq x < 0 \\ \cos x, & 0 < x \leq \frac{\pi}{2} \end{cases}$

Absolute Extrema on Finite Closed Intervals

In Exercises 21–40, find the absolute maximum and minimum values of each function on the given interval. Then graph the function. Identify the points on the graph where the absolute extrema occur, and include their coordinates.

21. $f(x) = \frac{2}{3}x - 5, -2 \leq x \leq 3$

22. $f(x) = -x - 4, -4 \leq x \leq 1$

23. $f(x) = x^2 - 1, -1 \leq x \leq 2$

24. $f(x) = 4 - x^3, -2 \leq x \leq 1$

25. $F(x) = -\frac{1}{x^2}, 0.5 \leq x \leq 2$

26. $F(x) = -\frac{1}{x}, -2 \leq x \leq -1$

27. $h(x) = \sqrt[3]{x}, -1 \leq x \leq 8$

28. $h(x) = -3x^{2/3}, -1 \leq x \leq 1$

29. $g(x) = \sqrt{4 - x^2}, -2 \leq x \leq 1$

30. $g(x) = -\sqrt{5 - x^2}, -\sqrt{5} \leq x \leq 0$

31. $f(\theta) = \sin \theta, -\frac{\pi}{2} \leq \theta \leq \frac{5\pi}{6}$

32. $f(\theta) = \tan \theta, -\frac{\pi}{3} \leq \theta \leq \frac{\pi}{4}$

33. $g(x) = \csc x, \frac{\pi}{3} \leq x \leq \frac{2\pi}{3}$

34. $g(x) = \sec x, -\frac{\pi}{3} \leq x \leq \frac{\pi}{6}$

35. $f(t) = 2 - |t|, -1 \leq t \leq 3$

36. $f(t) = |t - 5|, 4 \leq t \leq 7$

37. $g(x) = xe^{-x}, -1 \leq x \leq 1$

38. $h(x) = \ln(x + 1), 0 \leq x \leq 3$

39. $f(x) = \frac{1}{x} + \ln x, 0.5 \leq x \leq 4$

40. $g(x) = e^{-x^2}, -2 \leq x \leq 1$

In Exercises 41–44, find the function's absolute maximum and minimum values and say where they occur.

41. $f(x) = x^{4/3}, -1 \leq x \leq 8$

42. $f(x) = x^{5/3}, -1 \leq x \leq 8$

43. $g(\theta) = \theta^{3/5}, -32 \leq \theta \leq 1$

44. $h(\theta) = 3\theta^{2/3}, -27 \leq \theta \leq 8$

Finding Critical Points

In Exercises 45–56, determine all critical points for each function.

45. $y = x^2 - 6x + 7$

46. $f(x) = 6x^2 - x^3$

47. $f(x) = x(4 - x)^3$

48. $g(x) = (x - 1)^2(x - 3)^2$

49. $y = x^2 + \frac{2}{x}$

50. $f(x) = \frac{x^2}{x - 2}$

51. $y = x^2 - 32\sqrt{x}$

52. $g(x) = \sqrt{2x - x^2}$

53. $y = \ln(x + 1) - \tan^{-1} x$

54. $y = 2\sqrt{1 - x^2} + \sin^{-1} x$

55. $y = x^3 + 3x^2 - 24x + 7$

56. $y = x - 3x^{2/3}$

Local Extrema and Critical Points

In Exercises 57–64, find the critical points and domain endpoints for each function. Then find the value of the function at each of these points and identify extreme values (absolute and local).

57. $y = x^{2/3}(x + 2)$

59. $y = x\sqrt{4 - x^2}$

61. $y = \begin{cases} 4 - 2x, & x \leq 1 \\ x + 1, & x > 1 \end{cases}$

62. $y = \begin{cases} 3 - x, & x < 0 \\ 3 + 2x - x^2, & x \geq 0 \end{cases}$

63. $y = \begin{cases} -x^2 - 2x + 4, & x \leq 1 \\ -x^2 + 6x - 4, & x > 1 \end{cases}$

64. $y = \begin{cases} -\frac{1}{4}x^2 - \frac{1}{2}x + \frac{15}{4}, & x \leq 1 \\ x^3 - 6x^2 + 8x, & x > 1 \end{cases}$

In Exercises 65 and 66, give reasons for your answers.

65. Let $f(x) = (x - 2)^{2/3}$.

a. Does $f'(2)$ exist?

b. Show that the only local extreme value of f occurs at $x = 2$.

c. Does the result in part (b) contradict the Extreme Value Theorem?

d. Repeat parts (a) and (b) for $f(x) = (x - a)^{2/3}$, replacing 2 by a .

66. Let $f(x) = |x^3 - 9x|$.

a. Does $f'(0)$ exist?

b. Does $f'(3)$ exist?

c. Does $f'(-3)$ exist?

d. Determine all extrema of f .

In Exercises 67–70, show that the function has neither an absolute minimum nor an absolute maximum on its natural domain.

67. $y = x^{11} + x^3 + x - 5$

68. $y = 3x + \tan x$

69. $y = \frac{1 - e^x}{e^x + 1}$

70. $y = 2x - \sin 2x$

Theory and Examples

71. **A minimum with no derivative** The function $f(x) = |x|$ has an absolute minimum value at $x = 0$ even though f is not differentiable at $x = 0$. Is this consistent with Theorem 2? Give reasons for your answer.

72. **Even functions** If an even function $f(x)$ has a local maximum value at $x = c$, can anything be said about the value of f at $x = -c$? Give reasons for your answer.

73. **Odd functions** If an odd function $g(x)$ has a local minimum value at $x = c$, can anything be said about the value of g at $x = -c$? Give reasons for your answer.

74. **No critical points or endpoints exist** We know how to find the extreme values of a continuous function $f(x)$ by investigating its values at critical points and endpoints. But what if there are no critical points or endpoints? What happens then? Do such functions really exist? Give reasons for your answers.

75. The function

$$V(x) = x(10 - 2x)(16 - 2x), \quad 0 < x < 5,$$

models the volume of a box.

a. Find the extreme values of V .

b. Interpret any values found in part (a) in terms of the volume of the box.

76. Cubic functions Consider the cubic function

$$f(x) = ax^3 + bx^2 + cx + d.$$

- Show that f can have 0, 1, or 2 critical points. Give examples and graphs to support your argument.
- How many local extreme values can f have?

77. Maximum height of a vertically moving body The height of a body moving vertically is given by

$$s = -\frac{1}{2}gt^2 + v_0t + s_0, \quad g > 0,$$

with s in meters and t in seconds. Find the body's maximum height.

78. Peak alternating current Suppose that at any given time t (in seconds) the current i (in amperes) in an alternating current circuit is $i = 2 \cos t + 2 \sin t$. What is the peak current for this circuit (largest magnitude)?

T Graph the functions in Exercises 79–82. Then find the extreme values of the function on the interval and say where they occur.

- $f(x) = |x - 2| + |x + 3|, \quad -5 \leq x \leq 5$
- $g(x) = |x - 1| - |x - 5|, \quad -2 \leq x \leq 7$
- $h(x) = |x + 2| - |x - 3|, \quad -\infty < x < \infty$
- $k(x) = |x + 1| + |x - 3|, \quad -\infty < x < \infty$

COMPUTER EXPLORATIONS

In Exercises 83–90, you will use a CAS to help find the absolute extrema of the given function over the specified closed interval. Perform the following steps.

- Plot the function over the interval to see its general behavior there.
- Find the interior points where $f' = 0$. (In some exercises, you may have to use the numerical equation solver to approximate a solution.) You may want to plot f' as well.
- Find the interior points where f' does not exist.
- Evaluate the function at all points found in parts (b) and (c) and at the endpoints of the interval.
- Find the function's absolute extreme values on the interval and identify where they occur.

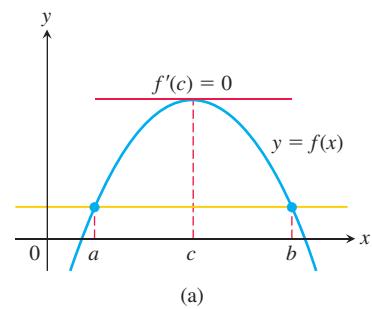
83. $f(x) = x^4 - 8x^2 + 4x + 2, \quad [-20/25, 64/25]$
 84. $f(x) = -x^4 + 4x^3 - 4x + 1, \quad [-3/4, 3]$
 85. $f(x) = x^{2/3}(3 - x), \quad [-2, 2]$
 86. $f(x) = 2 + 2x - 3x^{2/3}, \quad [-1, 10/3]$
 87. $f(x) = \sqrt{x} + \cos x, \quad [0, 2\pi]$
 88. $f(x) = x^{3/4} - \sin x + \frac{1}{2}, \quad [0, 2\pi]$
 89. $f(x) = \pi x^2 e^{-3x/2}, \quad [0, 5]$
 90. $f(x) = \ln(2x + x \sin x), \quad [1, 15]$

4.2 The Mean Value Theorem

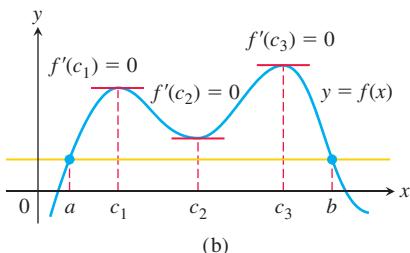
We know that constant functions have zero derivatives, but could there be a more complicated function whose derivative is always zero? If two functions have identical derivatives over an interval, how are the functions related? We answer these and other questions in this chapter by applying the Mean Value Theorem. First we introduce a special case, known as Rolle's Theorem, which is used to prove the Mean Value Theorem.

Rolle's Theorem

As suggested by its graph, if a differentiable function crosses a horizontal line at two different points, there is at least one point between them where the tangent to the graph is horizontal and the derivative is zero (Figure 4.10). We now state and prove this result.



(a)



(b)

FIGURE 4.10 Rolle's Theorem says that a differentiable curve has at least one horizontal tangent between any two points where it crosses a horizontal line. It may have just one (a), or it may have more (b).

THEOREM 3—Rolle's Theorem

Suppose that $y = f(x)$ is continuous over the closed interval $[a, b]$ and differentiable at every point of its interior (a, b) . If $f(a) = f(b)$, then there is at least one number c in (a, b) at which $f'(c) = 0$.

Proof Being continuous, f assumes absolute maximum and minimum values on $[a, b]$ by Theorem 1. These can occur only

- at interior points where f' is zero,
- at interior points where f' does not exist,
- at endpoints of the function's domain, in this case a and b .