4.3 Monotonic Functions and the First Derivative Test
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An

Answer the following questions about the functions whose derivatives

alyzing Functions from Derivatives

are given in Exercises 1-14:

S U1 W

11.
13.
14.

a. What are the critical points of f?
b. On what open intervals is f increasing or decreasing?

c. At what points, if any, does f assume local maximum and
minimum values?

L) = — 1) 2. f'x) = (x — DHx + 2)
) =G — DXx +2) 4. f'(x) = (x — D*(x + 2)?
CF@ =@ - e
)= (x = Dx+ Dx +5)

L X =1
. f(x)—ﬁ, x # =2

L =D+ 4 -
'f(x)ii(x—l—l)(x—?))’ x#—1,3

! 4 ’
.f(x)ZI—F, x#0 10.f(x):3—@, x#0

') = xPx + 2) 12. f'(x) = x'2(x — 3)
f'(x) = (sinx — 1)(2cosx + 1),0 = x = 27

f'(x) = (sinx + cos x)(sinx — cosx),0 = x = 2w

Identifying Extrema
In Exercises 15-46:

15.

17.

19
21
23
25
27

a. Find the open intervals on which the function is increasing
and decreasing.

b. Identify the function’s local and absolute extreme values, if
any, saying where they occur.
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=2
. g(t) =—1>—3t+3 20. g(t) = -3+ 9+ 5
. h(x) = —x° + 242 22. h(x) = 2x3 — 18x
. f(0) = 36% — 463 24. f(6) = 60 — 6°

. f(r) = 3r3 + 16r
L f) =2t — 82+ 16

26.
28.

Wr)y= (@ +17)73
gx) = x* — 4x® + 47

29.

H(n) = %t“ -

3. fx) =x —6Vx — 1 32

33, g(x) = xV8 — x? 34
x> -3

35. fix) = > x #2 36

37. f(x) = x'3x + 8) 38

39.
41.
43.
45.

h(x) = x'/3(x* — 4)
flx) = ¥ + e
fx) = xInx

g = x(Inx)?

In Exercises 47-58:

a. Identify the function’s local extreme values in the given
domain, and say where they occur.

grapher.
fx) = 2x — 22,
f) = (x + 17,

—co<x=2

—0o<x=0

. K@) =158 -7

.g(x)=4\/;cfx2+3

. g = x*V5 —x
I =30
. g() = x¥x + 5)

. k(x) = X232 — 4)
. f) = eV
. f(x) = x¥*Inx

. gx) =x* —2x —4Inx

b. Which of the extreme values, if any, are absolute?

(T]e.

47.
48.

49. gx) =x* —4dx+4, 1=x<o0
50. g(x) =—x>—6x—9, 4=x<o0
51. f() = 12t — 18, -3 =t<o0
5. f) =1 — 32 —oco<t=3

3
53.h(x)=%—2x2+4x, 0=x<o
54, k(x) = x> + 3x% + 3x + 1,

—0o<x=0

55. fx) = V25 —x%, —5=x=5
56. fx) = Vx> —2x — 3, 3=x<o00
7.6 =2"% 0=x<1
x-—1
.X2
58.g(x)=4_x2, —2<x=1

In Exercises 59-66:

a. Find the local extrema of each function on the given interval,

[T]b.

and say where they occur.

Support your findings with a graphing calculator or computer

Graph the function and its derivative together. Comment on

the behavior of f in relation to the signs and values of f'.

2T

59. fx) =sin2x, 0=x=m

60. f(x) =sinx —cosx, 0=x=

61. f(x) = V3cosx + sinx, 0=<x=<27
62. f(x) = —2x + tanx, %<x<E

2

—-T =X=1T

<

63. f(x) =5~ 2sin3, 0=x=2m
64. f(x) = —2cosx — cos®x,

65. f(x) = csc’x — 2cotx, 0 < x
66. f(x) = sec’x — 2tanx, _777- <

a
<7
)
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In Exercises 67 and 68, the graph of f’ is given. Assume that f is con-
tinuous and determine the x-values corresponding to local minima and
local maxima.

67. 68.
y y
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Theory and Examples

Show that the functions in Exercises 69 and 70 have local extreme
values at the given values of #, and say which kind of local extreme
the function has.

69. h() = 3cosg, 0=6=27 atf =0and6 = 27

A

70. h(0)=5sing, 0=60=m atf=0andl =7

71. Sketch the graph of a differentiable function y = f(x) through the
point (1, 1) if f'(1) = 0 and

a. f'(x) > 0forx < land f'(x) < O0forx > 1;
b. f'(x) < Oforx < land f'(x) > 0forx > 1;
c. f'(x) > Oforx # 1;
d. f'(x) < Oforx # 1.
72. Sketch the graph of a differentiable function y = f(x) that has
a. alocal minimum at (1, 1) and a local maximum at (3, 3);
b. alocal maximum at (1, 1) and a local minimum at (3, 3);
c. local maxima at (1, 1) and (3, 3);
d. local minima at (1, 1) and (3, 3).
73. Sketch the graph of a continuous function y = g(x) such that
a g2)=20<g <lforx<2g'x)—1 asx—2,
-1 <g <O0forx>2and g'(x) > —1" as x > 2%;
b. g2) =2,¢" <Oforx <2,¢'(x) >—c0as x—2",
g > O0forx > 2, and g'(x) = coas x — 2%,
74. Sketch the graph of a continuous function y = h(x) such that
a. h(0) =0,—2 = h(x) = 2forall x, ' (x) >oc0asx— 0,
and h'(x) — oo as x — 0™

b. h(0) = 0,—2 = h(x) = Oforall x, h'(x) > oc0asx— 07,
and h'(x) — —oo as x — 0.

m Concavity and Curve Sketching

75. Discuss the extreme-value behavior of the function f(x) =
xsin (1/x), x # 0. How many critical points does this function
have? Where are they located on the x-axis? Does f have an abso-
lute minimum? An absolute maximum? (See Exercise 49 in Sec-
tion 2.3.)

76. Find the open intervals on which the function f(x) = ax’> +
bx + ¢, a # 0, is increasing and decreasing. Describe the rea-
soning behind your answer.

77. Determine the values of constants a and b so that f(x) = ax®> + bx
has an absolute maximum at the point (1, 2).

78. Determine the values of constants a, b, ¢, and d so that
f(x) = ax® + bx*> + cx + d has a local maximum at the point
(0, 0) and a local minimum at the point (1, —1).

79. Locate and identify the absolute extreme values of
a. In(cosx)on [—m/4,7/3],

b. cos(Inx)on [1/2,2].

80. a. Prove that f(x) = x — Inx is increasing for x > 1.
b. Using part (a), show that Inx < x if x > 1.

81. Find the absolute maximum and minimum values of f(x) =
e —2xon [0,1].

82. Where does the periodic function f(x) = 2¢5"®/? take on its ex-
treme values and what are these values?

y

y= 2esin (x/2)

of

83. Find the absolute maximum value of f(x) = x?In(1/x) and say
where it occurs.

84. a. Provethate* =1 + xif x = 0.
b. Use the result in part (a) to show that

e“21+x+%x2.

85. Show that increasing functions and decreasing functions are one-
to-one. That is, show that for any x; and x, in 1, x, # x; implies

fOx) # fCxp).

Use the results of Exercise 85 to show that the functions in Exercises
86-90 have inverses over their domains. Find a formula for df ' /dx
using Theorem 3, Section 3.8.

86. f(x) = (1/3)x + (5/6)
88. f(x) =1 — 8°
90. f(x) = x°3

87. f(x) = 27x3
89. fx) =1 —x)°

We have seen how the first derivative tells us where a function is increasing, where it is
decreasing, and whether a local maximum or local minimum occurs at a critical point. In
this section we see that the second derivative gives us information about how the graph of
a differentiable function bends or turns. With this knowledge about the first and second
derivatives, coupled with our previous understanding of symmetry and asymptotic
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