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oror

or

y = f (x) y = f (x) y = f (x)

Di�erentiable 1
smooth, connected; graph
may rise and fall

y′ > 0 1 rises from
left to right;
may be wavy

y′ < 0 1 falls from
left to right;
may be wavy

y″ > 0 1 concave up
throughout; no waves; graph
may rise or fall or both

y″ < 0 1 concave down
throughout; no waves; graph
may rise or fall or both

y″ changes sign at an
inflection point

y′ changes sign 1 graph
has local maximum or local
minimum

y′ = 0  and  y″ < 0
at a point; graph has
local maximum

y′ = 0  and  y″ > 0
at a point; graph has
local minimum

+ −
+−

+
−

Analyzing Functions from Graphs
Identify the inflection points and local maxima and minima of the 
functions graphed in Exercises 1–8. Identify the intervals on which 
the functions are concave up and concave down.

1. 

0
x

y

y =      −      − 2x +x3

3
1
3

x2

2

 2. 

0
x

y

y =      − 2x2 + 4x4

4

3. 

0
x

y

y =     (x2 − 1)2�33
4

 4. 

0
x

y

y =      x1�3(x2 − 7)9
14

5.

0
x

y

−

y = x + sin 2x, −       ≤ x ≤2p
3

2p
3

2p
3

2p
3

6.

x

y

y = tan x − 4x, −     < x <p
2

p
2

0

7.

x

y

y = sin 0 x 0 , −2p ≤ x ≤ 2p

0

NOT TO SCALE

8.

x

y

0−p 3p
2

y = 2 cos x − 
"

2 x,  −p ≤ x ≤ 3p
2

Graphing Functions
In Exercises 9–58, identify the coordinates of any local and absolute 
extreme points and inflection points. Graph the function.

9. y = x2 - 4x + 3 10. y = 6 - 2x - x2

11. y = x3 - 3x + 3 12. y = x(6 - 2x)2

13. y = -2x3 + 6x2 - 3 14. y = 1 - 9x - 6x2 - x3

15. y = (x - 2)3 + 1 16. y = 1 - (x + 1)3

EXERCISES 4.4

asymptotes is found using limits (Section 2.6). The following figure summarizes how the 
first derivative and second derivative affect the shape of a graph.
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252 Chapter 4 Applications of Derivatives

71. y′ = tan2 u - 1, -  
p

2
6 u 6 p

2
72. y′ = 1 - cot2 u, 0 6 u 6 p

73. y′ = cos t, 0 … t … 2p

74. y′ = sin t, 0 … t … 2p

75. y′ = (x + 1)-2>3 76. y′ = (x - 2)-1>3

77. y′ = x-2>3(x - 1) 78. y′ = x-4>5(x + 1)

79. y′ = 2 0 x 0 = e-2x,  x … 0
2x,    x 7 0

80. y′ = e-x2,  x … 0
x2,    x 7 0

17. y = x4 - 2x2 = x2(x2 - 2)

18. y = -x4 + 6x2 - 4 = x2(6 - x2) - 4

19. y = 4x3 - x4 = x3(4 - x) 20. y = x4 + 2x3 = x3(x + 2)

21. y = x5 - 5x4 = x4(x - 5) 22. y = xax
2

- 5b
4

23. y = x + sin x, 0 … x … 2p

24. y = x - sin x, 0 … x … 2p

25. y = 23x - 2 cos x, 0 … x … 2p

26. y = 4
3

 x - tan x, 
-p

2
6 x 6 p

2
27. y = sin x cos x, 0 … x … p

28. y = cos x + 23 sin x, 0 … x … 2p

29. y = x1>5 30. y = x2>5

31. y = x

2x2 + 1
 32. y = 21 - x2

2x + 1

33. y = 2x - 3x2>3 34. y = 5x2>5 - 2x

35. y = x2>3a5
2

- xb  36. y = x2>3(x - 5)

37. y = x28 - x2 38. y = (2 - x2)3>2

39. y = 216 - x2 40. y = x2 + 2
x

41. y = x2 - 3
x - 2

 42. y = 23 x3 + 1

43. y = 8x
x2 + 4

 44. y = 5
x4 + 5

45. y = 0 x2 - 1 0  46. y = 0 x2 - 2 x 0
47. y = 2 0 x 0 = e2-x,  x 6 0

2x,    x Ú 0

48. y = 2 0 x - 4 0
49. y = x

9 - x2 50. y = x2

1 - x

51. y = ln (3 - x2) 52. y = (ln x)2

53. y = ex - 2e-x - 3x 54. y = xe-x

55. y = ln (cos x) 56. y = ln x

2x

57. y = 1
1 + e-x 58. y = ex

1 + ex

Sketching the General Shape, Knowing y′
Each of Exercises 59–80 gives the first derivative of a continuous 
function y = ƒ(x). Find y″ and then use Steps 2–4 of the graphing 
procedure on page 249 to sketch the general shape of the graph of ƒ.

 59. y′ = 2 + x - x2 60. y′ = x2 - x - 6 

 61. y′ = x(x - 3)2 62. y′ = x2(2 - x)

63. y′ = x(x2 - 12) 64. y′ = (x - 1)2(2x + 3)

65. y′ = (8x - 5x2)(4 - x)2 66. y′ = (x2 - 2x)(x - 5)2

67. y′ = sec2 x, -  
p

2
6 x 6 p

2

68. y′ = tan x, -  
p

2
6 x 6 p

2

69. y′ = cot  
u

2
, 0 6 u 6 2p 70. y′ = csc2  

u

2
, 0 6 u 6 2p

Sketching y from Graphs of y′ and y″
Each of Exercises 81–84 shows the graphs of the first and second 
derivatives of a function y = ƒ(x). Copy the picture and add to it a 
sketch of the approximate graph of ƒ, given that the graph passes 
through the point P.

 81. 
y = f ′(x)

y = f ″(x)

P

x

y  82. 

P

x

y

y = f ′(x)

y = f ″(x)

83. 

P

0
x

y

y = f ′(x)

y = f ″(x)

84. 

P

0
x

y

y = f ′(x)

y = f ″(x)

Graphing Rational Functions
Graph the rational functions in Exercises 85–102 using all the steps in 
the graphing procedure on page 249.

85. y = 2x2 + x - 1
x2 - 1

 86. y = x2 - 49
x2 + 5x - 14

87. y = x4 + 1
x2  88. y = x2 - 4

2x

89. y = 1
x2 - 1

 90. y = x2

x2 - 1

91. y = -  
x2 - 2
x2 - 1

 92. y = x2 - 4
x2 - 2

93. y = x2

x + 1
 94. y = -  

x2 - 4
x + 1

95. y = x2 - x + 1
x - 1

 96. y = -  
x2 - x + 1

x - 1
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4.4  Concavity and Curve Sketching 253

107. Sketch the graph of a twice-differentiable y = ƒ(x) with the fol-
lowing properties. Label coordinates where possible.

 x  y  Derivatives

 x 6 -2  y′ 7 0, y″ 6 0

 -2 -1  y′ = 0, y″ = 0

-2 6 x 6 -1  y′ 7 0, y″ 7 0

 -1  0  y′ 7 0, y″ = 0

 -1 6 x 6 0  y′ 7 0, y″ 6 0

 0  3  y′ = 0, y″ 6 0

 0 6 x 6 1  y′ 6 0, y″ 6 0

 1  2 y′ 6 0, y″ = 0

 1 6 x 6 2  y′ 6 0, y″ 7 0

 2  0  y′ = 0, y″ 7 0

 x 7 2  y′ 7 0, y″ 7 0

 108. Sketch the graph of a twice-differentiable function y = ƒ(x) that 
passes through the points (-3, -2), (-2, 0), (0, 1), (1, 2), and  
(2, 3) and whose first two derivatives have the following sign 
patterns.

xy9:
0 2

2 1 1 2

−3

xy 0:
0 1

1 2 1 2

−2

In Exercises 109 and 110, the graph of ƒ′ is given. Determine  
x-values corresponding to inflection points for the graph of ƒ.

 109. 

x

y

−2

−4

0 2 4−2−4

2

4

f 9
2

110. 

x

y

−2

−4

0 2 4−2−4

2

4
f 9

− 4

2

97. y = x3 - 3x2 + 3x - 1
x2 + x - 2

98. y = x3 + x - 2
x - x2

99. y = x
x2 - 1

100. y = x - 1
x2(x - 2)

101. y = 8
x2 + 4

  (Agnesi>s witch)

102. y = 4x
x2 + 4

  (Newton>s serpentine)

Theory and Examples

103. The accompanying figure shows a portion of the graph of a 
twice-differentiable function y = ƒ(x). At each of the five 
labeled points, classify y′ and y″ as positive, negative, or zero.

y = f (x)
S

TR

Q
P

x

y

0

104. Sketch a smooth connected curve y = ƒ(x) with

ƒ(-2) = 8,  ƒ′(2) = ƒ′(-2) = 0, 

 ƒ(0) = 4,  ƒ′(x) 6 0 for 0 x 0 6 2, 

 ƒ(2) = 0,  ƒ″(x) 6 0 for x 6 0, 

ƒ′(x) 7 0 for 0 x 0 7 2,  ƒ″(x) 7 0 for x 7 0.

105. Sketch the graph of a twice-differentiable function y = ƒ(x)
with the following properties. Label coordinates where possible.

 x y  Derivatives

 x 6 2 y′ 6 0, y″ 7 0

 2 1 y′ = 0, y″ 7 0

2 6 x 6 4 y′ 7 0, y″ 7 0

 4 4 y′ 7 0, y″ = 0

4 6 x 6 6 y′ 7 0, y″ 6 0

 6 7 y′ = 0, y″ 6 0

 x 7 6 y′ 6 0, y″ 6 0

106. Sketch the graph of a twice-differentiable function y = ƒ(x) that 
passes through the points (-2, 2), (-1, 1), (0, 0), (1, 1), and 
(2, 2) and whose first two derivatives have the following sign 
patterns.

y′: +      -      +      -
-2       0         2

y″: -      +      -
-1       1 
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C
os

t

c = f (x)

Thousands of units produced
20 40 60 80 100120

x

c

116. The accompanying graph shows the monthly revenue of the 
Widget Corporation for the past 12 years. During approximately 
what time intervals was the marginal revenue increasing? 
Decreasing?

t

y

y = r(t)

50 10

117. Suppose the derivative of the function y = ƒ(x) is

y′ = (x - 1)2(x - 2).

 At what points, if any, does the graph of ƒ have a local mini-
mum, local maximum, or point of inflection? (Hint: Draw the 
sign pattern for y′.)

 118. Suppose the derivative of the function y = ƒ(x) is

y′ = (x - 1)2(x - 2)(x - 4).

 At what points, if any, does the graph of ƒ have a local mini-
mum, local maximum, or point of inflection?

 119. For x 7 0, sketch a curve y = ƒ(x) that has ƒ(1) = 0 and 
ƒ′(x) = 1>x. Can anything be said about the concavity of such a 
curve? Give reasons for your answer.

 120. Can anything be said about the graph of a function y = ƒ(x) that 
has a continuous second derivative that is never zero? Give rea-
sons for your answer.

 121. If b, c, and d are constants, for what value of b will the curve 
y = x3 + bx2 + cx + d have a point of inflection at x = 1?
Give reasons for your answer.

122. Parabolas

a. Find the coordinates of the vertex of the parabola 
y = ax2 + bx + c, a ≠ 0.

b. When is the parabola concave up? Concave down? Give 
reasons for your answers.

 123. Quadratic curves What can you say about the inflection 
points of a quadratic curve y = ax2 + bx + c, a ≠ 0? Give 
reasons for your answer.

 124. Cubic curves What can you say about the inflection points of 
a cubic curve y = ax3 + bx2 + cx + d, a ≠ 0? Give reasons 
for your answer.

In Exercises 111 and 112, the graph of ƒ′ is given. Determine x- 
values corresponding to local minima, local maxima, and inflection 
points for the graph of ƒ.

 111. 

x

y

−2

−4

0 2 4−2−4

2

4

f 9

112. 

x

y

−2

−4

0 2 4−2−4

2

4

f 9

2 4−4

Motion Along a Line The graphs in Exercises 113 and 114 show 
the position s = ƒ(t) of an object moving up and down on a coordi-
nate line. (a) When is the object moving away from the origin? 
Toward the origin? At approximately what times is the (b) velocity 
equal to zero? (c) Acceleration equal to zero? (d) When is the accel-
eration positive? Negative?

 113. 

D
is

pl
ac

em
en

t

s = f (t)

Time (sec)

5 10 150
t

s

114. 

D
is

pl
ac

em
en

t

s = f (t)

Time (sec)

5 10 150
t

s

115. Marginal cost The accompanying graph shows the hypotheti-
cal cost c = ƒ(x) of manufacturing x items. At approximately 
what production level does the marginal cost change from 
decreasing to increasing?
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125. Suppose that the second derivative of the function y = ƒ(x) is

y″ = (x + 1)(x - 2).

 For what x-values does the graph of ƒ have an inflection point?

 126. Suppose that the second derivative of the function y = ƒ(x) is

y″ = x2(x - 2)3(x + 3).

 For what x-values does the graph of ƒ have an inflection point?

 127. Find the values of constants a, b, and c so that the graph of 
y = ax3 + bx2 + cx has a local maximum at x = 3, local mini-
mum at x = -1, and inflection point at (1, 11).

 128. Find the values of constants a, b, and c so that the graph of 
y = (x2 + a)>(bx + c) has a local minimum at x = 3 and a 
local maximum at (-1, -2).

COMPUTER EXPLORATIONS
In Exercises 129–132, find the inflection points (if any) on the graph of 
the function and the coordinates of the points on the graph where the 
function has a local maximum or local minimum value. Then graph the 

function in a region large enough to show all these points simultane-
ously. Add to your picture the graphs of the function’s first and second 
derivatives. How are the values at which these graphs intersect the 
x-axis related to the graph of the function? In what other ways are the 
graphs of the derivatives related to the graph of the function?

 129. y = x5 - 5x4 - 240 130. y = x3 - 12x2

131. y = 4
5

 x5 + 16x2 - 25

 132. y = x4

4
- x3

3
- 4x2 + 12x + 20

 133. Graph ƒ(x) = 2x4 - 4x2 + 1 and its first two derivatives 
together. Comment on the behavior of ƒ in relation to the signs 
and values of ƒ′ and ƒ″.

 134. Graph ƒ(x) = x cos x and its second derivative together for 
0 … x … 2p. Comment on the behavior of the graph of ƒ in 
relation to the signs and values of ƒ″.

4.5 Indeterminate Forms and L’Hôpital’s Rule

Expressions such as “0 >0” and “q>q” look something like ordinary numbers. We say 
that they have the form of a number. But values cannot be assigned to them in a way that is 
consistent with the usual rules to add and multiply numbers. We are led to call them “inde-
terminate forms.” Although we must remain careful to remember that they are not num-
bers, we will see that they can play useful roles in summarizing the limiting behavior of a 
function.

John (Johann) Bernoulli discovered a rule using derivatives to calculate limits of frac-
tions whose numerators and denominators both approach zero or +q. The rule is known 
today as l’Hôpital’s Rule, after Guillaume de l’Hôpital. He was a French nobleman who 
wrote the first introductory differential calculus text, where the rule first appeared in print. 
Limits involving transcendental functions often require some use of the rule.

Indeterminate Form 0 ,0
If we want to know how the function

ƒ(x) = 3x - sinx
x

behaves near x = 0 (where it is undefined), we can examine the limit of ƒ(x) as x S 0.
We cannot apply the Quotient Rule for limits (Theorem 1 of Chapter 2) because the limit 
of the denominator is 0. Moreover, in this case, both the numerator and denominator 
approach 0, and 0>0 is undefined. Such limits may or may not exist in general, but the 
limit does exist for the function ƒ(x) under discussion by applying l’Hôpital’s Rule, as we 
will see in Example 1d.

If the continuous functions ƒ(x) and g(x) are both zero at x = a, then

lim
xSa

ƒ(x)
g(x)

cannot be found by substituting x = a. The substitution produces 0>0, a meaningless 
expression, which we cannot evaluate. We use 0>0 as a notation for an expression that 
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