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asymptotes is found using limits (Section 2.6). The following figure summarizes how the
first derivative and second derivative affect the shape of a graph.

y=r® y=r® y=rf®

Differentiable = y" > 0= rises from y' < 0= falls from
smooth, connected; graph left to right; left to right;
may rise and fall may be wavy may be wavy

or or -

+
y" > 0= concave up y" < 0= concave down y" changes sign at an
throughout; no waves; graph | throughout; no waves; graph | inflection point
may rise or fall or both may rise or fall or both
- o+
or
NN

y' changes sign = graph y' =0 and y" <0 y' =0 and y">0
has local maximum or local at a point; graph has at a point; graph has
minimum local maximum local minimum

Analyzing Functions from Graphs 5.
Identify the inflection points and local maxima and minima of the
functions graphed in Exercises 1-8. Identify the intervals on which

3 3 2 2
y y
the functions are concave up and concave down. I/\ /_\I )
1. 32 2. . :
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y=x+sin2x,—2—775x52—77 6. y=tanx—4x,—£<x<E
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7. y=sin|x|, 2mr =x =27 8'y=2cosx—\/§x, _77st37#
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X
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X -7 0 3T
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NOT TO SCALE
3. y= %(xz —1)2/3 4. y= 19_4)(1/3(962 -7
y y Graphing Functions
In Exercises 9-58, identify the coordinates of any local and absolute
extreme points and inflection points. Graph the function.
9. y=x>—4x+3 10. y =6 — 2x — x*
0 * 0 X L. y=x—3x+3 12. y = x(6 — 2x)
13. y = —22% + 6x2 — 3 14. y=1—9x — 6x> — x°
15. y=x—-27+1 16. y=1—(x+ 1)
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17. y=x4— 22 = xX2(x* — 2)
18. y = —x* + 6x% — 4 = x}(6 — x%) — 4
19. y =48 —x* =234 —x) 20. y=x*+ 2 = x + 2)

4
21,y = x° — Sx* = x*(x - 5) 22.y=x<%—5)

0=x=27
24, y =x —sinx, 0=x=2w
25.y=\/?_>x—2005x, 0=x=27

23. y = x + sinux,

— T
3 2<x<2

27. y =sinxcosxy, 0=x=m
28. y = cosx + \@sinx, 0=x=27

26. y = ix — tan x,

29, y = x!/5 30. y = x°
1 — 2
3. y= ——— 3y = VI oX
Vi + 1 2x + 1
33. y = 2x — 3x%° 34, y =52 — 2
35.y= x2/3<% - x) 36. y = x?3(x — 5)
37.y = xV8 — x? 38. y =02 — %)
39.y=vl6*x2 40.y=x2+)2—c
2 _
41-y=);_23 2. y=Vr+1
8x 5
43. y = 4. y=
Y x>+ 4 J x*+5
45. y = [x* — 1] 46. y = | — 24|
V—x, x<0
47.y = Vx| = ’
Y ] {\/?c =0
48. y = \/|x—4\
2
_ X _ X
49.y—9_x2 50. y —x
51. y=In(3 — x?) 52. y = (In x)?
53, y =¢" — 2¢* — 3x 54, y = xe™*
Inx
55. y = In(cos x) 56. y = —=
Y RV
A BT

Sketching the General Shape, Knowing y’

Each of Exercises 59-80 gives the first derivative of a continuous
function y = f(x). Find y” and then use Steps 2—4 of the graphing
procedure on page 249 to sketch the general shape of the graph of f.

59.y =2+ x—x? 60. y =x>—x—6
61. y' = x(x — 3)? 62. y =x*2 —x)
63. y = x(x*> — 12) 64. y' = (x — 1)’2x + 3)
65.y = 8x — 5xH@ —x*  66. y = (x* — 2x)(x — 5)°
- 2 _T m
67. y sec” x, 2<x<2
68. y' = tanx, —*<x<g
ro_ 0 [ 20
69.y7c0t§,0<0<27-r 70.yfcsci,0<0<277

71,y = tan?6 — 1, —g<e<%

72.y =1 —cot?0, 0<60<m

73. y =cost, 0=t=27m

74. y' =sint, 0=1t=27w

75.y = (x + 1) 76. v = (x — 2y
77,y = xx — 1) 78. v = x(x + 1)
79. y' = 2|x| = {zjx’ ’;ig

—x% x=0
80. y' = ’
Y {xz, x>0

Sketching y from Graphs of y’ and y”

Each of Exercises 81-84 shows the graphs of the first and second
derivatives of a function y = f(x). Copy the picture and add to it a
sketch of the approximate graph of f, given that the graph passes
through the point P.

81. y

y =1 /
P
[ ]
X

%

N\
71NN

y=f") y=f")
83. »
Pe v =1
0 X
y=r &
84.
y=f'(
O X
Po

Graphing Rational Functions
Graph the rational functions in Exercises 85-102 using all the steps in
the graphing procedure on page 249.

85. y= 72)62);_)61_1
87.y=x4;2_1
89.y:x21_1
91.y:—%
93'y:x)-ci-21

2 _
%0 i
88. y ="
90.y7x2xj1
92.y:%



X =32+ 3x— 1
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107. Sketch the graph of a twice-differentiable y = f(x) with the fol-
lowing properties. Label coordinates where possible.

7.y = 2+x—2
X+x—-2
Wey="%-2
X
99. y = 21
x— 1
100. y = m
8 G
101. y = 214 (Agnesi’s witch)
4x R .
102. y = 214 (Newton’s serpentine)

Theory and Examples

103. The accompanying figure shows a portion of the graph of a
twice-differentiable function y = f(x). At each of the five
labeled points, classify y’ and y” as positive, negative, or zero.

x y Derivatives
x <=2 y >0, y<0

-2 -1 y =0, y=0
—2<x<-1 y >0, y">0
-1 0 y >0, y"=0
“1<x<0 y >0, y<0
0 y =0, y<0
0<x<l1 y <0, y<0
1 y <0, y"=0
1<x<2 y <0, y">0
2 y =0, y>0
x>2 y >0, y>0

108. Sketch the graph of a twice-differentiable function y = f(x) that
passes through the points (—3,—2), (=2, 0), (0, 1), (1, 2), and
(2, 3) and whose first two derivatives have the following sign

0

104. Sketch a smooth connected curve y = f(x) with

f(=2) = 8, '@ =f=2) =0,
f0) = 4, f'x) <0 for |x| <2,
f2) =0, f'(x) <0 for x <0,

') >0 for |x| >2, f'x) >0 for x>0.

105. Sketch the graph of a twice-differentiable function y = f(x)
with the following properties. Label coordinates where possible.

x y Derivatives
x <2 y <0, yY>0
2 1 y =0, y">0
2<x<4 y >0, y>0
4 4 y >0, yY=0
4 <x<6 y >0, y"<0
6 7 y =0, y"<0
x>6 y <0, y"<0

106. Sketch the graph of a twice-differentiable function y = f(x) that
passes through the points (—=2,2), (=1, 1), (0,0), (1, 1), and
(2,2) and whose first two derivatives have the following sign
patterns.

patterns.

In Exercises 109 and 110, the graph of f' is given. Determine

x-values corresponding to inflection points for the graph of f.

109. y

110. y
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In Exercises 111 and 112, the graph of f’ is given. Determine x-
values corresponding to local minima, local maxima, and inflection
points for the graph of f.

111.

112.

A
7

—4

Motion Along a Line The graphs in Exercises 113 and 114 show
the position s = f(¢) of an object moving up and down on a coordi-
nate line. (a) When is the object moving away from the origin?
Toward the origin? At approximately what times is the (b) velocity
equal to zero? (c¢) Acceleration equal to zero? (d) When is the accel-
eration positive? Negative?

113.

114.

115.

N

=
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8
< =
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Marginal cost The accompanying graph shows the hypotheti-
cal cost ¢ = f(x) of manufacturing x items. At approximately
what production level does the marginal cost change from
decreasing to increasing?

116.

117.

118.

119.

120.

121.

122.

123.

124.

c=f

Cost

P P P R B B
20 40 60 80 100120
Thousands of units produced

The accompanying graph shows the monthly revenue of the
Widget Corporation for the past 12 years. During approximately
what time intervals was the marginal revenue increasing?
Decreasing?

y=r@

Suppose the derivative of the function y = f(x) is
y o= (x— 1D*x —2).
At what points, if any, does the graph of f have a local mini-
mum, local maximum, or point of inflection? (Hint: Draw the
sign pattern for y'.)
Suppose the derivative of the function y = f(x) is
y =@ — DXx — 2 — 4.

At what points, if any, does the graph of f have a local mini-
mum, local maximum, or point of inflection?

For x > 0, sketch a curve y = f(x) that has f(1) = 0 and
f'(x) = 1/x. Can anything be said about the concavity of such a
curve? Give reasons for your answer.

Can anything be said about the graph of a function y = f(x) that
has a continuous second derivative that is never zero? Give rea-
sons for your answer.

If b, ¢, and d are constants, for what value of b will the curve
y = x> + bx> + cx + d have a point of inflection at x = 1?
Give reasons for your answer.

Parabolas

a. Find the coordinates of the vertex of the parabola
y=ax*+ bx + c,a # 0.

b. When is the parabola concave up? Concave down? Give
reasons for your answers.

Quadratic curves What can you say about the inflection
points of a quadratic curve y = ax’> + bx + c¢,a # 0? Give
reasons for your answer.

Cubic curves What can you say about the inflection points of
a cubic curve y = ax’ + bx*> + cx + d,a # 0? Give reasons
for your answer.



125. Suppose that the second derivative of the function y = f(x) is
y'=(x+ Dx — 2).
For what x-values does the graph of f have an inflection point?
126. Suppose that the second derivative of the function y = f(x) is
Y= xHx — 2)%x + 3).
For what x-values does the graph of f have an inflection point?
127. Find the values of constants a, b, and ¢ so that the graph of
y = ax® + bx?> + cx has a local maximum at x = 3, local mini-
mum at x = —1, and inflection point at (1, 11).
128. Find the values of constants a, b, and ¢ so that the graph of

y = x>+ a)/(bx + ¢) has a local minimum at x = 3 and a
local maximum at (—1, —2).

COMPUTER EXPLORATIONS

In Exercises 129-132, find the inflection points (if any) on the graph of
the function and the coordinates of the points on the graph where the
function has a local maximum or local minimum value. Then graph the
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function in a region large enough to show all these points simultane-
ously. Add to your picture the graphs of the function’s first and second
derivatives. How are the values at which these graphs intersect the
x-axis related to the graph of the function? In what other ways are the
graphs of the derivatives related to the graph of the function?

129. y = x> — 5x* — 240 130. y = x3 — 12x?

131. y = i)c5 + 16x2 — 25

5
4 3
132.y=%—%—4x2+12x+20

133. Graph f(x) = 2x* — 4x> + 1 and its first two derivatives
together. Comment on the behavior of f in relation to the signs
and values of f" and f”.

134. Graph f(x) = xcosx and its second derivative together for
0 = x = 27. Comment on the behavior of the graph of f in
relation to the signs and values of f”.

m Indeterminate Forms and L’Hépital’s Rule

HISTORICAL BIOGRAPHY
Guillaume Francois Antoine de I’Hopital
(1661-1704)

www.goo.gl/nMIIKA

Johann Bernoulli

(1667-1748)

www . goo.gl/70BgHS

Expressions such as “0/0” and “co/o0” look something like ordinary numbers. We say
that they have the form of a number. But values cannot be assigned to them in a way that is
consistent with the usual rules to add and multiply numbers. We are led to call them ““inde-
terminate forms.” Although we must remain careful to remember that they are not num-
bers, we will see that they can play useful roles in summarizing the limiting behavior of a
function.

John (Johann) Bernoulli discovered a rule using derivatives to calculate limits of frac-
tions whose numerators and denominators both approach zero or +oco. The rule is known
today as I’Hépital’s Rule, after Guillaume de 1’Hopital. He was a French nobleman who
wrote the first introductory differential calculus text, where the rule first appeared in print.
Limits involving transcendental functions often require some use of the rule.

Indeterminate Form 0/0
If we want to know how the function
3x — sinx

f) = V75—
behaves near x = 0 (where it is undefined), we can examine the limit of f(x) as x — 0.
We cannot apply the Quotient Rule for limits (Theorem 1 of Chapter 2) because the limit
of the denominator is 0. Moreover, in this case, both the numerator and denominator
approach 0, and 0/0 is undefined. Such limits may or may not exist in general, but the
limit does exist for the function f(x) under discussion by applying I’Hdpital’s Rule, as we
will see in Example 1d.

If the continuous functions f(x) and g(x) are both zero at x = a, then

im 1)
x—a 8(X)

cannot be found by substituting x = a. The substitution produces 0/0, a meaningless
expression, which we cannot evaluate. We use 0/0 as a notation for an expression that
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