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RIS 4.5

Finding Limits in Two Ways
In Exercises 1-6, use 1’Hopital’s Rule to evaluate the limit. Then
evaluate the limit using a method studied in Chapter 2.

1. lim £ 172 2. lim $n%
X—)—2x2 — 4 x—0 X
2 _ 3 _
3. 2 = 3x 4 lim—> 1
x>0 Tx2 + 1 x—14x3 — x — 3
_ 2
5. lim L~ 08X 6. lim =X T3x
x—0 _xz x—oox? + x + 1

Applying I’'Hépital’s Rule
Use 1’Hopital’s rule to find the limits in Exercises 7-50.
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Indeterminate Powers and Products
Find the limits in Exercises 51-66.
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Theory and Applications
L’Hopital’s Rule does not help with the limits in Exercises 67-74. Try
it—you just keep on cycling. Find the limits some other way.
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75. Which one is correct, and which one is wrong? Give reasons for
your answers.
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76. Which one is correct, and which one is wrong? Give reasons for
your answers.

X2 = 2x . 2x — 2
a. lim - = lim
x—0x2 — sinx  x—02X — COS X
- lims 2= 2=
x—02 +sinx 2+ 0
2 — —
b limE 2 = fims2 2 - "2 _,

x—0x2 — sinx xr—02x —cosx 0 —1



77. Only one of these calculations is correct. Which one? Why are the
others wrong? Give reasons for your answers.
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78. Find all values of ¢ that satisfy the conclusion of Cauchy’s Mean
Value Theorem for the given functions and interval.

a. f(x) = x, glx) = X2, (a,b) = (—2,0)
b. f(x) = x, gx) = X2, (a, b) arbitrary
c. f(x) =x%/3 — 4x, gx) = x2, (a,b) = (0, 3)
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continuous at x = 0. Explain why your value of ¢ works.
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interval of x-values.
b. Now confirm your estimate by finding the limit with
I’Hopital’s Rule. As the first step, multiply f(x) by the frac-
tion (x + Va2 + x)/(x + Va2 + x) and simplify the new

numerator.
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by graphing. Then confirm your estimate with 1’Hopital’s Rule.
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a. Use I’Hopital’s Rule to show that
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b. Graph
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together for x = 0. How does the behavior of f compare
with that of g? Estimate the value of lim,_, ., f(x).

c. Confirm your estimate of lim,_,, f(x) by calculating it with
I’Hopital’s Rule.
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86. Given that x > 0, find the maximum value, if any, of
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d. Show that lim,_,. x'/¥" = 1 for every positive integer n.

87. Use limits to find horizontal asymptotes for each function.

(1) 3x + &
a. y=xtan|y = =0

2x + e
—1/x* #£ ()
88. Find f'(0) for f(x) = {e o

0, x = 0.

89. The continuous extension of (sin x)* to [0, 7]

a. Graph f(x) = (sin x)* on the interval 0 = x = 7. What
value would you assign to f to make it continuous at x = 0?

b. Verify your conclusion in part (a) by finding lim,_,q+ f(x)
with I’Hopital’s Rule.

c. Returning to the graph, estimate the maximum value of f on
[0, 7 ]. About where is max f taken on?

d. Sharpen your estimate in part (c) by graphing f’ in the same
window to see where its graph crosses the x-axis. To simplify
your work, you might want to delete the exponential factor
from the expression for f' and graph just the factor that has a
zZero.

90. The function (sin x)¥"* (Continuation of Exercise 89.)

a. Graph f(x) = (sin x)®"* on the interval =7 =< x = 7. How
do you account for the gaps in the graph? How wide are the
gaps?

b. Now graph f on the interval 0 = x = 7. The function is not
defined at x = 77/2, but the graph has no break at this point.
What is going on? What value does the graph appear to give
for f at x = 7r/2? (Hint: Use 1’Hopital’s Rule to find lim f
as x— (7/2)” and x — (7 /2)*.)

c. Continuing with the graphs in part (b), find max f and min f
as accurately as you can and estimate the values of x at which
they are taken on.



