

EXERCISES

4.5

Finding Limits in Two Ways

In Exercises 1–6, use l'Hôpital's Rule to evaluate the limit. Then evaluate the limit using a method studied in Chapter 2.

1. $\lim_{x \rightarrow 2} \frac{x+2}{x^2-4}$

3. $\lim_{x \rightarrow \infty} \frac{5x^2-3x}{7x^2+1}$

5. $\lim_{x \rightarrow 0} \frac{1-\cos x}{x^2}$

2. $\lim_{x \rightarrow 0} \frac{\sin 5x}{x}$

4. $\lim_{x \rightarrow 1} \frac{x^3-1}{4x^3-x-3}$

6. $\lim_{x \rightarrow \infty} \frac{2x^2+3x}{x^3+x+1}$

43. $\lim_{\theta \rightarrow 0} \frac{\cos \theta - 1}{e^\theta - \theta - 1}$

45. $\lim_{t \rightarrow \infty} \frac{e^t + t^2}{e^t - t}$

47. $\lim_{x \rightarrow 0} \frac{x - \sin x}{x \tan x}$

49. $\lim_{\theta \rightarrow 0} \frac{\theta - \sin \theta \cos \theta}{\tan \theta - \theta}$

44. $\lim_{h \rightarrow 0} \frac{e^h - (1 + h)}{h^2}$

46. $\lim_{x \rightarrow \infty} x^2 e^{-x}$

48. $\lim_{x \rightarrow 0} \frac{(e^x - 1)^2}{x \sin x}$

50. $\lim_{x \rightarrow 0} \frac{\sin 3x - 3x + x^2}{\sin x \sin 2x}$

Applying l'Hôpital's Rule

Use l'Hôpital's rule to find the limits in Exercises 7–50.

7. $\lim_{x \rightarrow 2} \frac{x-2}{x^2-4}$

9. $\lim_{t \rightarrow 3} \frac{t^3-4t+15}{t^2-t-12}$

11. $\lim_{x \rightarrow \infty} \frac{5x^3-2x}{7x^3+3}$

13. $\lim_{t \rightarrow 0} \frac{\sin t^2}{t}$

15. $\lim_{x \rightarrow 0} \frac{8x^2}{\cos x - 1}$

17. $\lim_{\theta \rightarrow \pi/2} \frac{2\theta - \pi}{\cos(2\pi - \theta)}$

19. $\lim_{\theta \rightarrow \pi/2} \frac{1 - \sin \theta}{1 + \cos 2\theta}$

21. $\lim_{x \rightarrow 0} \frac{x^2}{\ln(\sec x)}$

23. $\lim_{t \rightarrow 0} \frac{t(1 - \cos t)}{t - \sin t}$

25. $\lim_{x \rightarrow (\pi/2)^-} \left(x - \frac{\pi}{2} \right) \sec x$

27. $\lim_{\theta \rightarrow 0} \frac{3^{\sin \theta} - 1}{\theta}$

29. $\lim_{x \rightarrow 0} \frac{x2^x}{2^x - 1}$

31. $\lim_{x \rightarrow \infty} \frac{\ln(x+1)}{\log_2 x}$

33. $\lim_{x \rightarrow 0^+} \frac{\ln(x^2+2x)}{\ln x}$

35. $\lim_{y \rightarrow 0} \frac{\sqrt{5y+25} - 5}{y}$

37. $\lim_{x \rightarrow \infty} (\ln 2x - \ln(x+1))$

39. $\lim_{x \rightarrow 0^+} \frac{(\ln x)^2}{\ln(\sin x)}$

41. $\lim_{x \rightarrow 1^+} \left(\frac{1}{x-1} - \frac{1}{\ln x} \right)$

8. $\lim_{x \rightarrow -5} \frac{x^2 - 25}{x + 5}$

10. $\lim_{t \rightarrow -1} \frac{3t^3 + 3}{4t^3 - t + 3}$

12. $\lim_{x \rightarrow \infty} \frac{x - 8x^2}{12x^2 + 5x}$

14. $\lim_{t \rightarrow 0} \frac{\sin 5t}{2t}$

16. $\lim_{x \rightarrow 0} \frac{\sin x - x}{x^3}$

18. $\lim_{\theta \rightarrow -\pi/3} \frac{3\theta + \pi}{\sin(\theta + (\pi/3))}$

20. $\lim_{x \rightarrow 1} \frac{x-1}{\ln x - \sin \pi x}$

22. $\lim_{x \rightarrow \pi/2} \frac{\ln(\csc x)}{(x - (\pi/2))^2}$

24. $\lim_{t \rightarrow 0} \frac{t \sin t}{1 - \cos t}$

26. $\lim_{x \rightarrow (\pi/2)^-} \left(\frac{\pi}{2} - x \right) \tan x$

28. $\lim_{\theta \rightarrow 0} \frac{(1/2)^\theta - 1}{\theta}$

30. $\lim_{x \rightarrow 0} \frac{3^x - 1}{2^x - 1}$

32. $\lim_{x \rightarrow \infty} \frac{\log_2 x}{\log_3(x+3)}$

34. $\lim_{x \rightarrow 0^+} \frac{\ln(e^x - 1)}{\ln x}$

36. $\lim_{y \rightarrow 0} \frac{\sqrt{ay+a^2} - a}{y}, \quad a > 0$

38. $\lim_{x \rightarrow 0^+} (\ln x - \ln \sin x)$

40. $\lim_{x \rightarrow 0^+} \left(\frac{3x+1}{x} - \frac{1}{\sin x} \right)$

42. $\lim_{x \rightarrow 0^+} (\csc x - \cot x + \cos x)$

Indeterminate Powers and Products

Find the limits in Exercises 51–66.

51. $\lim_{x \rightarrow 1^+} x^{1/(x-1)}$

53. $\lim_{x \rightarrow \infty} (\ln x)^{1/x}$

55. $\lim_{x \rightarrow 0^+} x^{-1/\ln x}$

57. $\lim_{x \rightarrow \infty} (1 + 2x)^{1/(2 \ln x)}$

59. $\lim_{x \rightarrow 0^+} x^x$

61. $\lim_{x \rightarrow \infty} \left(\frac{x+2}{x-1} \right)^x$

63. $\lim_{x \rightarrow 0^+} x^2 \ln x$

65. $\lim_{x \rightarrow 0^+} x \tan \left(\frac{\pi}{2} - x \right)$

52. $\lim_{x \rightarrow 1^+} x^{1/(x-1)}$

54. $\lim_{x \rightarrow e^+} (\ln x)^{1/(x-e)}$

56. $\lim_{x \rightarrow \infty} x^{1/\ln x}$

58. $\lim_{x \rightarrow 0} (e^x + x)^{1/x}$

60. $\lim_{x \rightarrow 0^+} \left(1 + \frac{1}{x} \right)^x$

62. $\lim_{x \rightarrow \infty} \left(\frac{x^2+1}{x+2} \right)^{1/x}$

64. $\lim_{x \rightarrow 0^+} x(\ln x)^2$

66. $\lim_{x \rightarrow 0^+} \sin x \cdot \ln x$

Theory and Applications

L'Hôpital's Rule does not help with the limits in Exercises 67–74. Try it—you just keep on cycling. Find the limits some other way.

67. $\lim_{x \rightarrow \infty} \frac{\sqrt{9x+1}}{\sqrt{x+1}}$

68. $\lim_{x \rightarrow 0^+} \frac{\sqrt{x}}{\sqrt{\sin x}}$

69. $\lim_{x \rightarrow (\pi/2)^-} \frac{\sec x}{\tan x}$

70. $\lim_{x \rightarrow 0^+} \frac{\cot x}{\csc x}$

71. $\lim_{x \rightarrow \infty} \frac{2^x - 3^x}{3^x + 4^x}$

72. $\lim_{x \rightarrow -\infty} \frac{2^x + 4^x}{5^x - 2^x}$

73. $\lim_{x \rightarrow \infty} \frac{e^{x^2}}{x e^x}$

74. $\lim_{x \rightarrow 0^+} \frac{x}{e^{-1/x}}$

75. Which one is correct, and which one is wrong? Give reasons for your answers.

a. $\lim_{x \rightarrow 3} \frac{x-3}{x^2-3} = \lim_{x \rightarrow 3} \frac{1}{2x} = \frac{1}{6}$ b. $\lim_{x \rightarrow 3} \frac{x-3}{x^2-3} = \frac{0}{6} = 0$

76. Which one is correct, and which one is wrong? Give reasons for your answers.

a. $\lim_{x \rightarrow 0} \frac{x^2-2x}{x^2-\sin x} = \lim_{x \rightarrow 0} \frac{2x-2}{2x-\cos x} = \lim_{x \rightarrow 0} \frac{2}{2+\sin x} = \frac{2}{2+0} = 1$

b. $\lim_{x \rightarrow 0} \frac{x^2-2x}{x^2-\sin x} = \lim_{x \rightarrow 0} \frac{2x-2}{2x-\cos x} = \frac{-2}{0-1} = 2$

77. Only one of these calculations is correct. Which one? Why are the others wrong? Give reasons for your answers.

- $\lim_{x \rightarrow 0^+} x \ln x = 0 \cdot (-\infty) = 0$
- $\lim_{x \rightarrow 0^+} x \ln x = 0 \cdot (-\infty) = -\infty$
- $\lim_{x \rightarrow 0^+} x \ln x = \lim_{x \rightarrow 0^+} \frac{\ln x}{1/x} = \frac{-\infty}{\infty} = -1$
- $$\begin{aligned} \lim_{x \rightarrow 0^+} x \ln x &= \lim_{x \rightarrow 0^+} \frac{\ln x}{1/x} \\ &= \lim_{x \rightarrow 0^+} \frac{(1/x)}{(-1/x^2)} = \lim_{x \rightarrow 0^+} (-x) = 0 \end{aligned}$$

78. Find all values of c that satisfy the conclusion of Cauchy's Mean Value Theorem for the given functions and interval.

- $f(x) = x, \quad g(x) = x^2, \quad (a, b) = (-2, 0)$
- $f(x) = x, \quad g(x) = x^2, \quad (a, b)$ arbitrary
- $f(x) = x^3/3 - 4x, \quad g(x) = x^2, \quad (a, b) = (0, 3)$

79. **Continuous extension** Find a value of c that makes the function

$$f(x) = \begin{cases} \frac{9x - 3 \sin 3x}{5x^3}, & x \neq 0 \\ c, & x = 0 \end{cases}$$

continuous at $x = 0$. Explain why your value of c works.

80. For what values of a and b is

$$\lim_{x \rightarrow 0} \left(\frac{\tan 2x}{x^3} + \frac{a}{x^2} + \frac{\sin bx}{x} \right) = 0?$$

T 81. $\infty - \infty$ Form

a. Estimate the value of

$$\lim_{x \rightarrow \infty} (x - \sqrt{x^2 + x})$$

by graphing $f(x) = x - \sqrt{x^2 + x}$ over a suitably large interval of x -values.

b. Now confirm your estimate by finding the limit with L'Hôpital's Rule. As the first step, multiply $f(x)$ by the fraction $(x + \sqrt{x^2 + x})/(x + \sqrt{x^2 + x})$ and simplify the new numerator.

82. Find $\lim_{x \rightarrow \infty} (\sqrt{x^2 + 1} - \sqrt{x})$.

T 83. 0/0 Form Estimate the value of

$$\lim_{x \rightarrow 1} \frac{2x^2 - (3x + 1)\sqrt{x} + 2}{x - 1}$$

by graphing. Then confirm your estimate with L'Hôpital's Rule.

84. This exercise explores the difference between the limit

$$\lim_{x \rightarrow \infty} \left(1 + \frac{1}{x^2} \right)^x$$

and the limit

$$\lim_{x \rightarrow \infty} \left(1 + \frac{1}{x} \right)^x = e.$$

a. Use l'Hôpital's Rule to show that

$$\lim_{x \rightarrow \infty} \left(1 + \frac{1}{x} \right)^x = e.$$

T b. Graph

$$f(x) = \left(1 + \frac{1}{x^2} \right)^x \quad \text{and} \quad g(x) = \left(1 + \frac{1}{x} \right)^x$$

together for $x \geq 0$. How does the behavior of f compare with that of g ? Estimate the value of $\lim_{x \rightarrow \infty} f(x)$.

c. Confirm your estimate of $\lim_{x \rightarrow \infty} f(x)$ by calculating it with l'Hôpital's Rule.

85. Show that

$$\lim_{k \rightarrow \infty} \left(1 + \frac{r}{k} \right)^k = e^r.$$

86. Given that $x > 0$, find the maximum value, if any, of

a. $x^{1/x}$

b. x^{1/x^2}

c. x^{1/x^n} (n a positive integer)

d. Show that $\lim_{x \rightarrow \infty} x^{1/x^n} = 1$ for every positive integer n .

87. Use limits to find horizontal asymptotes for each function.

a. $y = x \tan \left(\frac{1}{x} \right)$ b. $y = \frac{3x + e^{2x}}{2x + e^{3x}}$

88. Find $f'(0)$ for $f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0 \\ 0, & x = 0. \end{cases}$

T 89. The continuous extension of $(\sin x)^x$ to $[0, \pi]$

a. Graph $f(x) = (\sin x)^x$ on the interval $0 \leq x \leq \pi$. What value would you assign to f to make it continuous at $x = 0$?

b. Verify your conclusion in part (a) by finding $\lim_{x \rightarrow 0^+} f(x)$ with l'Hôpital's Rule.

c. Returning to the graph, estimate the maximum value of f on $[0, \pi]$. About where is $\max f$ taken on?

d. Sharpen your estimate in part (c) by graphing f' in the same window to see where its graph crosses the x -axis. To simplify your work, you might want to delete the exponential factor from the expression for f' and graph just the factor that has a zero.

T 90. The function $(\sin x)^{\tan x}$ (Continuation of Exercise 89.)

a. Graph $f(x) = (\sin x)^{\tan x}$ on the interval $-7 \leq x \leq 7$. How do you account for the gaps in the graph? How wide are the gaps?

b. Now graph f on the interval $0 \leq x \leq \pi$. The function is not defined at $x = \pi/2$, but the graph has no break at this point. What is going on? What value does the graph appear to give for f at $x = \pi/2$? (Hint: Use l'Hôpital's Rule to find $\lim f$ as $x \rightarrow (\pi/2)^-$ and $x \rightarrow (\pi/2)^+$.)

c. Continuing with the graphs in part (b), find $\max f$ and $\min f$ as accurately as you can and estimate the values of x at which they are taken on.