

EXAMPLE 6 A cabinetmaker uses cherry wood to produce 5 desks each day. Each delivery of one container of wood is \$5000, whereas the storage of that material is \$10 per day per unit stored, where a unit is the amount of material needed by her to produce 1 desk. How much material should be ordered each time, and how often should the material be delivered, to minimize her average daily cost in the production cycle between deliveries?

Solution If she asks for a delivery every x days, then she must order $5x$ units to have enough material for that delivery cycle. The *average* amount in storage is approximately one-half of the delivery amount, or $5x/2$. Thus, the cost of delivery and storage for each cycle is approximately

$$\text{Cost per cycle} = \text{delivery costs} + \text{storage costs}$$

$$\text{Cost per cycle} = \underbrace{5000}_{\text{delivery cost}} + \underbrace{\left(\frac{5x}{2}\right)}_{\text{average amount stored}} \cdot \underbrace{\frac{x}{\text{number of days stored}}}_{\text{storage cost per day}} \cdot 10$$

We compute the *average daily cost* $c(x)$ by dividing the cost per cycle by the number of days x in the cycle (see Figure 4.47).

$$c(x) = \frac{5000}{x} + 25x, \quad x > 0.$$

As $x \rightarrow 0$ and as $x \rightarrow \infty$, the average daily cost becomes large. So we expect a minimum to exist, but where? Our goal is to determine the number of days x between deliveries that provides the absolute minimum cost.

We find the critical points by determining where the derivative is equal to zero:

$$\begin{aligned} c'(x) &= -\frac{500}{x^2} + 25 = 0 \\ x &= \pm \sqrt{200} \approx \pm 14.14. \end{aligned}$$

Of the two critical points, only $\sqrt{200}$ lies in the domain of $c(x)$. The critical point value of the average daily cost is

$$c(\sqrt{200}) = \frac{5000}{\sqrt{200}} + 25\sqrt{200} = 500\sqrt{2} \approx \$707.11.$$

We note that $c(x)$ is defined over the open interval $(0, \infty)$ with $c''(x) = 10000/x^3 > 0$. Thus, an absolute minimum exists at $x = \sqrt{200} \approx 14.14$ days.

The cabinetmaker should schedule a delivery of $5(14) = 70$ units of wood every 14 days. ■

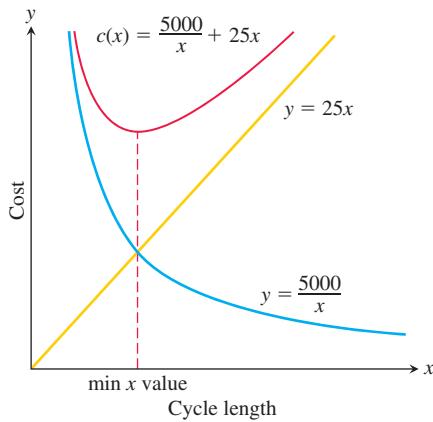


FIGURE 4.47 The average daily cost $c(x)$ is the sum of a hyperbola and a linear function (Example 6).

EXERCISES 4.6

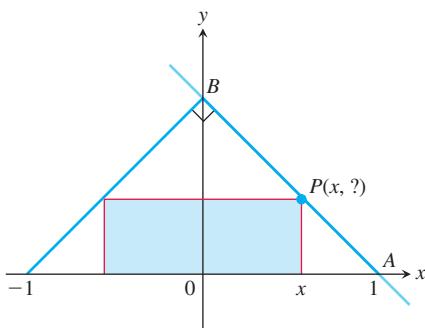
Mathematical Applications

Whenever you are maximizing or minimizing a function of a single variable, we urge you to graph it over the domain that is appropriate to the problem you are solving. The graph will provide insight before you calculate and will furnish a visual context for understanding your answer.

1. Minimizing perimeter What is the smallest perimeter possible for a rectangle whose area is 16 in^2 , and what are its dimensions?

- Show that among all rectangles with an 8-m perimeter, the one with largest area is a square.
- The figure shows a rectangle inscribed in an isosceles right triangle whose hypotenuse is 2 units long.
 - Express the y -coordinate of P in terms of x . (Hint: Write an equation for the line AB .)
 - Express the area of the rectangle in terms of x .

c. What is the largest area the rectangle can have, and what are its dimensions?



4. A rectangle has its base on the x -axis and its upper two vertices on the parabola $y = 12 - x^2$. What is the largest area the rectangle can have, and what are its dimensions?

5. You are planning to make an open rectangular box from an 8-in.-by-15-in. piece of cardboard by cutting congruent squares from the corners and folding up the sides. What are the dimensions of the box of largest volume you can make this way, and what is its volume?

6. You are planning to close off a corner of the first quadrant with a line segment 20 units long running from $(a, 0)$ to $(0, b)$. Show that the area of the triangle enclosed by the segment is largest when $a = b$.

7. **The best fencing plan** A rectangular plot of farmland will be bounded on one side by a river and on the other three sides by a single-strand electric fence. With 800 m of wire at your disposal, what is the largest area you can enclose, and what are its dimensions?

8. **The shortest fence** A 216 m^2 rectangular pea patch is to be enclosed by a fence and divided into two equal parts by another fence parallel to one of the sides. What dimensions for the outer rectangle will require the smallest total length of fence? How much fence will be needed?

9. **Designing a tank** Your iron works has contracted to design and build a 500 ft^3 , square-based, open-top, rectangular steel holding tank for a paper company. The tank is to be made by welding thin stainless steel plates together along their edges. As the production engineer, your job is to find dimensions for the base and height that will make the tank weigh as little as possible.

- What dimensions do you tell the shop to use?
- Briefly describe how you took weight into account.

10. **Catching rainwater** A 1125 ft^3 open-top rectangular tank with a square base x ft on a side and y ft deep is to be built with its top flush with the ground to catch runoff water. The costs associated with the tank involve not only the material from which the tank is made but also an excavation charge proportional to the product xy .

- If the total cost is

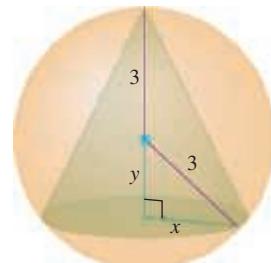
$$c = 5(x^2 + 4xy) + 10xy,$$

what values of x and y will minimize it?

b. Give a possible scenario for the cost function in part (a).

11. **Designing a poster** You are designing a rectangular poster to contain 50 in^2 of printing with a 4-in. margin at the top and bottom and a 2-in. margin at each side. What overall dimensions will minimize the amount of paper used?

12. Find the volume of the largest right circular cone that can be inscribed in a sphere of radius 3.



13. Two sides of a triangle have lengths a and b , and the angle between them is θ . What value of θ will maximize the triangle's area? (Hint: $A = (1/2)ab \sin \theta$.)

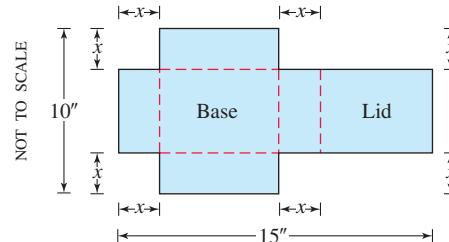
14. **Designing a can** What are the dimensions of the lightest open-top right circular cylindrical can that will hold a volume of 1000 cm^3 ? Compare the result here with the result in Example 2.

15. **Designing a can** You are designing a 1000 cm^3 right circular cylindrical can whose manufacturer will take waste into account. There is no waste in cutting the aluminum for the side, but the top and bottom of radius r will be cut from squares that measure $2r$ units on a side. The total amount of aluminum used up by the can will therefore be

$$A = 8r^2 + 2\pi r h$$

rather than the $A = 2\pi r^2 + 2\pi r h$ in Example 2. In Example 2, the ratio of h to r for the most economical can was 2 to 1. What is the ratio now?

T 16. **Designing a box with a lid** A piece of cardboard measures 10 in. by 15 in. Two equal squares are removed from the corners of a 10-in. side as shown in the figure. Two equal rectangles are removed from the other corners so that the tabs can be folded to form a rectangular box with lid.



- Write a formula $V(x)$ for the volume of the box.
- Find the domain of V for the problem situation and graph V over this domain.
- Use a graphical method to find the maximum volume and the value of x that gives it.
- Confirm your result in part (c) analytically.

T 17. **Designing a suitcase** A 24-in.-by-36-in. sheet of cardboard is folded in half to form a 24-in.-by-18-in. rectangle as shown in the accompanying figure. Then four congruent squares of side length x are cut from the corners of the folded rectangle. The sheet is unfolded, and the six tabs are folded up to form a box with sides and a lid.

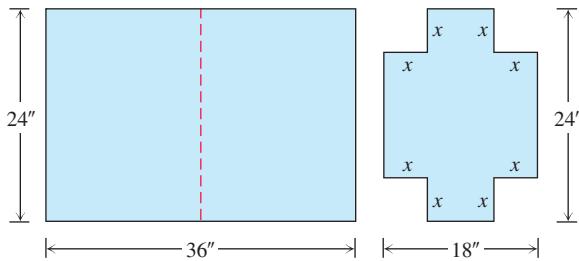
- Write a formula $V(x)$ for the volume of the box.
- Find the domain of V for the problem situation and graph V over this domain.

c. Use a graphical method to find the maximum volume and the value of x that gives it.

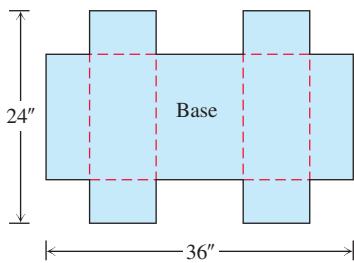
d. Confirm your result in part (c) analytically.

e. Find a value of x that yields a volume of 1120 in³.

f. Write a paragraph describing the issues that arise in part (b).



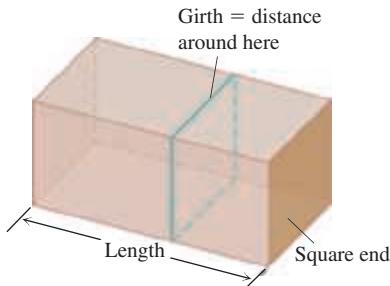
The sheet is then unfolded.



18. A rectangle is to be inscribed under the arch of the curve $y = 4 \cos(0.5x)$ from $x = -\pi$ to $x = \pi$. What are the dimensions of the rectangle with largest area, and what is the largest area?

19. Find the dimensions of a right circular cylinder of maximum volume that can be inscribed in a sphere of radius 10 cm. What is the maximum volume?

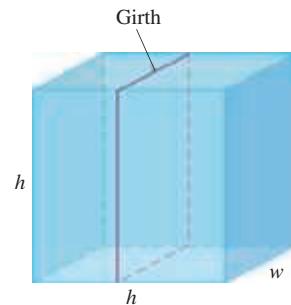
20. a. The U.S. Postal Service will accept a box for domestic shipment only if the sum of its length and girth (distance around) does not exceed 108 in. What dimensions will give a box with a square end the largest possible volume?



b. Graph the volume of a 108-in. box (length plus girth equals 108 in.) as a function of its length and compare what you see with your answer in part (a).

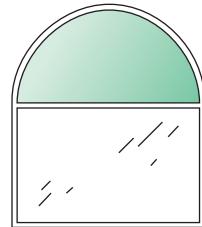
21. (Continuation of Exercise 20.)

a. Suppose that instead of having a box with square ends you have a box with square sides so that its dimensions are h by h by w and the girth is $2h + 2w$. What dimensions will give the box its largest volume now?



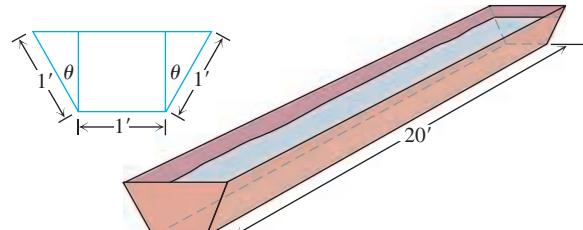
b. Graph the volume as a function of h and compare what you see with your answer in part (a).

22. A window is in the form of a rectangle surmounted by a semicircle. The rectangle is of clear glass, whereas the semicircle is of tinted glass that transmits only half as much light per unit area as clear glass does. The total perimeter is fixed. Find the proportions of the window that will admit the most light. Neglect the thickness of the frame.



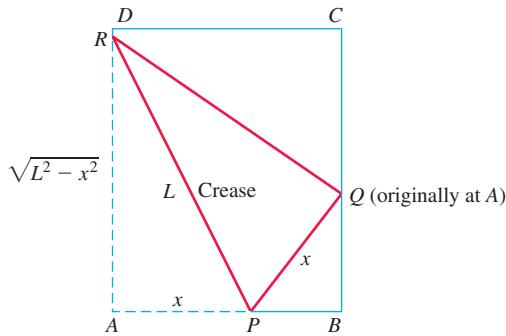
23. A silo (base not included) is to be constructed in the form of a cylinder surmounted by a hemisphere. The cost of construction per square unit of surface area is twice as great for the hemisphere as it is for the cylindrical sidewall. Determine the dimensions to be used if the volume is fixed and the cost of construction is to be kept to a minimum. Neglect the thickness of the silo and waste in construction.

24. The trough in the figure is to be made to the dimensions shown. Only the angle θ can be varied. What value of θ will maximize the trough's volume?



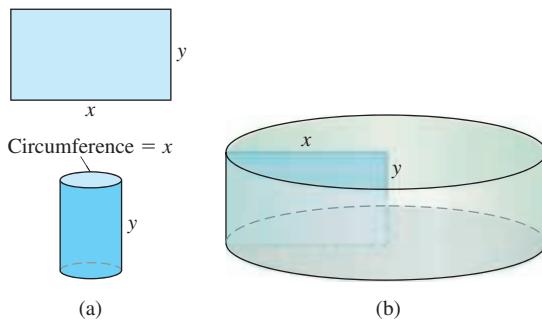
25. Paper folding A rectangular sheet of 8.5-in.-by-11-in. paper is placed on a flat surface. One of the corners is placed on the opposite longer edge, as shown in the figure, and held there as the paper is smoothed flat. The problem is to make the length of the crease as small as possible. Call the length L . Try it with paper.

- Show that $L^2 = 2x^3/(2x - 8.5)$.
- What value of x minimizes L^2 ?
- What is the minimum value of L ?

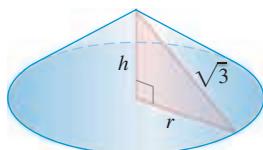


26. Constructing cylinders Compare the answers to the following two construction problems.

- A rectangular sheet of perimeter 36 cm and dimensions x cm by y cm is to be rolled into a cylinder as shown in part (a) of the figure. What values of x and y give the largest volume?
- The same sheet is to be revolved about one of the sides of length y to sweep out the cylinder as shown in part (b) of the figure. What values of x and y give the largest volume?



27. Constructing cones A right triangle whose hypotenuse is $\sqrt{3}$ m long is revolved about one of its legs to generate a right circular cone. Find the radius, height, and volume of the cone of greatest volume that can be made this way.

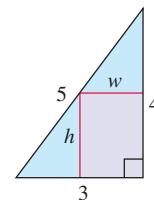


- Find the point on the line $\frac{x}{a} + \frac{y}{b} = 1$ that is closest to the origin.
- Find a positive number for which the sum of it and its reciprocal is the smallest (least) possible.
- Find a positive number for which the sum of its reciprocal and four times its square is the smallest possible.

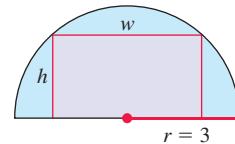
31. A wire b m long is cut into two pieces. One piece is bent into an equilateral triangle and the other is bent into a circle. If the sum of the areas enclosed by each part is a minimum, what is the length of each part?

32. Answer Exercise 31 if one piece is bent into a square and the other into a circle.

33. Determine the dimensions of the rectangle of largest area that can be inscribed in the right triangle shown in the accompanying figure.



34. Determine the dimensions of the rectangle of largest area that can be inscribed in a semicircle of radius 3. (See accompanying figure.)



35. What value of a makes $f(x) = x^2 + (a/x)$ have

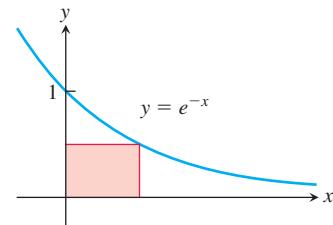
- a local minimum at $x = 2$?
- a point of inflection at $x = 1$?

36. What values of a and b make $f(x) = x^3 + ax^2 + bx$ have

- a local maximum at $x = -1$ and a local minimum at $x = 3$?
- a local minimum at $x = 4$ and a point of inflection at $x = 1$?

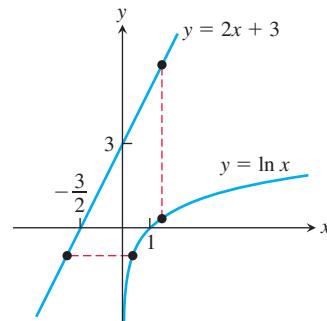
37. A right circular cone is circumscribed in a sphere of radius 1. Determine the height h and radius r of the cone of maximum volume.

38. Determine the dimensions of the inscribed rectangle of maximum area.



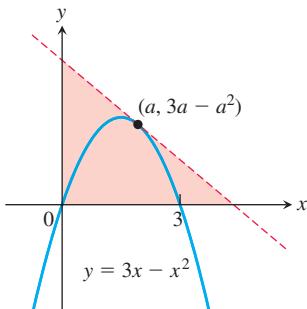
39. Consider the accompanying graphs of $y = 2x + 3$ and $y = \ln x$. Determine the

- minimum vertical distance
- minimum horizontal distance between these graphs.

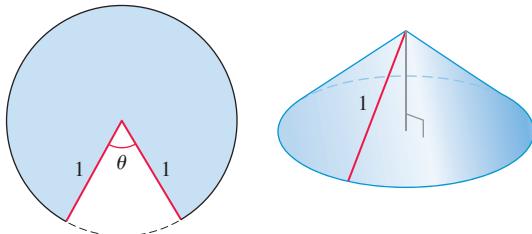


40. Find the point on the graph of $y = 20x^3 + 60x - 3x^5 - 5x^4$ with the largest slope.

41. Among all triangles in the first quadrant formed by the x -axis, the y -axis, and tangent lines to the graph of $y = 3x - x^2$, what is the smallest possible area?



42. A cone is formed from a circular piece of material of radius 1 meter by removing a section of angle θ and then joining the two straight edges. Determine the largest possible volume for the cone.



Physical Applications

43. **Vertical motion** The height above ground of an object moving vertically is given by

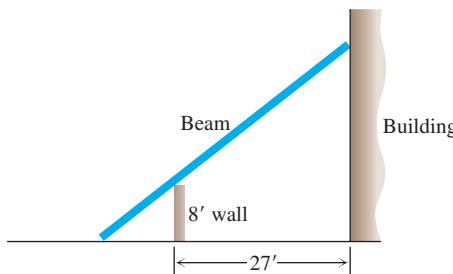
$$s = -16t^2 + 96t + 112,$$

with s in feet and t in seconds. Find

- the object's velocity when $t = 0$;
- its maximum height and when it occurs;
- its velocity when $s = 0$.

44. **Quickest route** Jane is 2 mi offshore in a boat and wishes to reach a coastal village 6 mi down a straight shoreline from the point nearest the boat. She can row 2 mph and can walk 5 mph. Where should she land her boat to reach the village in the least amount of time?

45. **Shortest beam** The 8-ft wall shown here stands 27 ft from the building. Find the length of the shortest straight beam that will reach to the side of the building from the ground outside the wall.



46. **Motion on a line** The positions of two particles on the s -axis are $s_1 = \sin t$ and $s_2 = \sin(t + \pi/3)$, with s_1 and s_2 in meters and t in seconds.

- At what time(s) in the interval $0 \leq t \leq 2\pi$ do the particles meet?
- What is the farthest apart that the particles ever get?
- When in the interval $0 \leq t \leq 2\pi$ is the distance between the particles changing the fastest?

47. The intensity of illumination at any point from a light source is proportional to the square of the reciprocal of the distance between the point and the light source. Two lights, one having an intensity eight times that of the other, are 6 m apart. How far from the stronger light is the total illumination least?

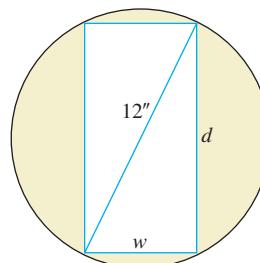
48. **Projectile motion** The range R of a projectile fired from the origin over horizontal ground is the distance from the origin to the point of impact. If the projectile is fired with an initial velocity v_0 at an angle α with the horizontal, then in Chapter 13 we find that

$$R = \frac{v_0^2}{g} \sin 2\alpha,$$

where g is the downward acceleration due to gravity. Find the angle α for which the range R is the largest possible.

T 49. **Strength of a beam** The strength S of a rectangular wooden beam is proportional to its width times the square of its depth. (See the accompanying figure.)

- Find the dimensions of the strongest beam that can be cut from a 12-in.-diameter cylindrical log.
- Graph S as a function of the beam's width w , assuming the proportionality constant to be $k = 1$. Reconcile what you see with your answer in part (a).
- On the same screen, graph S as a function of the beam's depth d , again taking $k = 1$. Compare the graphs with one another and with your answer in part (a). What would be the effect of changing to some other value of k ? Try it.

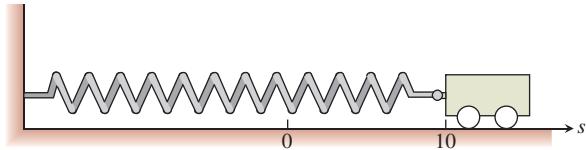


T 50. **Stiffness of a beam** The stiffness S of a rectangular beam is proportional to its width times the cube of its depth.

- Find the dimensions of the stiffest beam that can be cut from a 12-in.-diameter cylindrical log.
- Graph S as a function of the beam's width w , assuming the proportionality constant to be $k = 1$. Reconcile what you see with your answer in part (a).
- On the same screen, graph S as a function of the beam's depth d , again taking $k = 1$. Compare the graphs with one another and with your answer in part (a). What would be the effect of changing to some other value of k ? Try it.

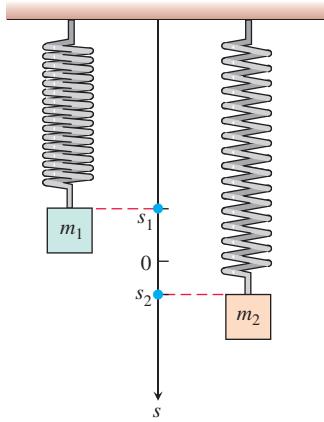
51. Frictionless cart A small frictionless cart, attached to the wall by a spring, is pulled 10 cm from its rest position and released at time $t = 0$ to roll back and forth for 4 sec. Its position at time t is $s = 10 \cos \pi t$.

- What is the cart's maximum speed? When is the cart moving that fast? Where is it then? What is the magnitude of the acceleration then?
- Where is the cart when the magnitude of the acceleration is greatest? What is the cart's speed then?



52. Two masses hanging side by side from springs have positions $s_1 = 2 \sin t$ and $s_2 = \sin 2t$, respectively.

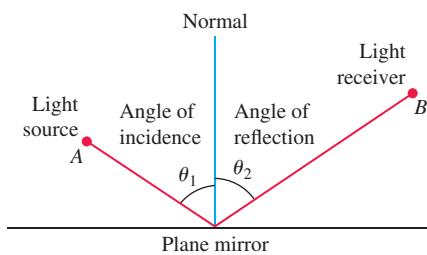
- At what times in the interval $0 < t$ do the masses pass each other? (Hint: $\sin 2t = 2 \sin t \cos t$.)
- When in the interval $0 \leq t \leq 2\pi$ is the vertical distance between the masses the greatest? What is this distance? (Hint: $\cos 2t = 2 \cos^2 t - 1$.)



53. Distance between two ships At noon, ship A was 12 nautical miles due north of ship B . Ship A was sailing south at 12 knots (nautical miles per hour; a nautical mile is 2000 yd) and continued to do so all day. Ship B was sailing east at 8 knots and continued to do so all day.

- Start counting time with $t = 0$ at noon and express the distance s between the ships as a function of t .
- How rapidly was the distance between the ships changing at noon? One hour later?
- The visibility that day was 5 nautical miles. Did the ships ever sight each other?
- Graph s and ds/dt together as functions of t for $-1 \leq t \leq 3$, using different colors if possible. Compare the graphs and reconcile what you see with your answers in parts (b) and (c).
- The graph of ds/dt looks as if it might have a horizontal asymptote in the first quadrant. This in turn suggests that ds/dt approaches a limiting value as $t \rightarrow \infty$. What is this value? What is its relation to the ships' individual speeds?

54. Fermat's principle in optics Light from a source A is reflected by a plane mirror to a receiver at point B , as shown in the accompanying figure. Show that for the light to obey Fermat's principle, the angle of incidence must equal the angle of reflection, both measured from the line normal to the reflecting surface. (This result can also be derived without calculus. There is a purely geometric argument, which you may prefer.)



55. Tin pest When metallic tin is kept below 13.2°C , it slowly becomes brittle and crumbles to a gray powder. Tin objects eventually crumble to this gray powder spontaneously if kept in a cold climate for years. The Europeans who saw tin organ pipes in their churches crumble away years ago called the change *tin pest* because it seemed to be contagious, and indeed it was, for the gray powder is a catalyst for its own formation.

A *catalyst* for a chemical reaction is a substance that controls the rate of reaction without undergoing any permanent change in itself. An *autocatalytic reaction* is one whose product is a catalyst for its own formation. Such a reaction may proceed slowly at first if the amount of catalyst present is small and slowly again at the end, when most of the original substance is used up. But in between, when both the substance and its catalyst product are abundant, the reaction proceeds at a faster pace.

In some cases, it is reasonable to assume that the rate $v = dx/dt$ of the reaction is proportional both to the amount of the original substance present and to the amount of product. That is, v may be considered to be a function of x alone, and

$$v = kx(a - x) = kax - kx^2,$$

where

x = the amount of product

a = the amount of substance at the beginning

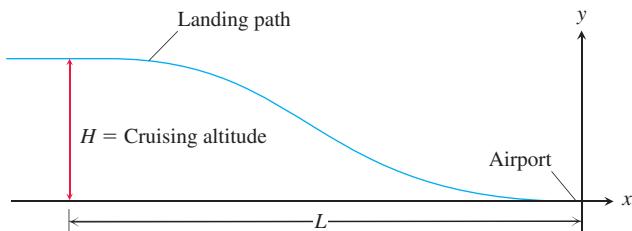
k = a positive constant.

At what value of x does the rate v have a maximum? What is the maximum value of v ?

56. Airplane landing path An airplane is flying at altitude H when it begins its descent to an airport runway that is at horizontal ground distance L from the airplane, as shown in the figure on the next page. Assume that the landing path of the airplane is the graph of a cubic polynomial function $y = ax^3 + bx^2 + cx + d$, where $y(-L) = H$ and $y(0) = 0$.

- What is dy/dx at $x = 0$?
- What is dy/dx at $x = -L$?
- Use the values for dy/dx at $x = 0$ and $x = -L$ together with $y(0) = 0$ and $y(-L) = H$ to show that

$$y(x) = H \left[2 \left(\frac{x}{L} \right)^3 + 3 \left(\frac{x}{L} \right)^2 \right].$$



Business and Economics

57. It costs you c dollars each to manufacture and distribute backpacks. If the backpacks sell at x dollars each, the number sold is given by

$$n = \frac{a}{x - c} + b(100 - x),$$

where a and b are positive constants. What selling price will bring a maximum profit?

58. You operate a tour service that offers the following rates:

\$200 per person if 50 people (the minimum number to book the tour) go on the tour.

For each additional person, up to a maximum of 80 people total, the rate per person is reduced by \$2.

It costs \$6000 (a fixed cost) plus \$32 per person to conduct the tour. How many people does it take to maximize your profit?

59. **Wilson lot size formula** One of the formulas for inventory management says that the average weekly cost of ordering, paying for, and holding merchandise is

$$A(q) = \frac{km}{q} + cm + \frac{hq}{2},$$

where q is the quantity you order when things run low (shoes, radios, brooms, or whatever the item might be), k is the cost of placing an order (the same, no matter how often you order), c is the cost of one item (a constant), m is the number of items sold each week (a constant), and h is the weekly holding cost per item (a constant that takes into account things such as space, utilities, insurance, and security).

a. Your job, as the inventory manager for your store, is to find the quantity that will minimize $A(q)$. What is it? (The formula you get for the answer is called the *Wilson lot size formula*.)

b. Shipping costs sometimes depend on order size. When they do, it is more realistic to replace k by $k + bq$, the sum of k and a constant multiple of q . What is the most economical quantity to order now?

60. **Production level** Prove that the production level (if any) at which average cost is smallest is a level at which the average cost equals marginal cost.

61. Show that if $r(x) = 6x$ and $c(x) = x^3 - 6x^2 + 15x$ are your revenue and cost functions, then the best you can do is break even (have revenue equal cost).

62. **Production level** Suppose that $c(x) = x^3 - 20x^2 + 20,000x$ is the cost of manufacturing x items. Find a production level that will minimize the average cost of making x items.

63. You are to construct an open rectangular box with a square base and a volume of 48 ft^3 . If material for the bottom costs $\$6/\text{ft}^2$ and material for the sides costs $\$4/\text{ft}^2$, what dimensions will result in the least expensive box? What is the minimum cost?

64. The 800-room Mega Motel chain is filled to capacity when the room charge is \$50 per night. For each \$10 increase in room charge, 40 fewer rooms are filled each night. What charge per room will result in the maximum revenue per night?

Biology

65. **Sensitivity to medicine** (Continuation of Exercise 74, Section 3.3.) Find the amount of medicine to which the body is most sensitive by finding the value of M that maximizes the derivative dR/dM , where

$$R = M^2 \left(\frac{C}{2} - \frac{M}{3} \right)$$

and C is a constant.

66. **How we cough**

a. When we cough, the trachea (windpipe) contracts to increase the velocity of the air going out. This raises the questions of how much it should contract to maximize the velocity and whether it really contracts that much when we cough.

Under reasonable assumptions about the elasticity of the tracheal wall and about how the air near the wall is slowed by friction, the average flow velocity v can be modeled by the equation

$$v = c(r_0 - r)r^2 \text{ cm/sec}, \quad \frac{r_0}{2} \leq r \leq r_0,$$

where r_0 is the rest radius of the trachea in centimeters and c is a positive constant whose value depends in part on the length of the trachea.

Show that v is greatest when $r = (2/3)r_0$; that is, when the trachea is about 33% contracted. The remarkable fact is that X-ray photographs confirm that the trachea contracts about this much during a cough.

b. Take r_0 to be 0.5 and c to be 1 and graph v over the interval $0 \leq r \leq 0.5$. Compare what you see with the claim that v is at a maximum when $r = (2/3)r_0$.

Theory and Examples

67. **An inequality for positive integers** Show that if a, b, c , and d are positive integers, then

$$\frac{(a^2 + 1)(b^2 + 1)(c^2 + 1)(d^2 + 1)}{abcd} \geq 16.$$

68. The derivative dt/dx in Example 4

a. Show that

$$f(x) = \frac{x}{\sqrt{a^2 + x^2}}$$

is an increasing function of x .

b. Show that

$$g(x) = \frac{d - x}{\sqrt{b^2 + (d - x)^2}}$$

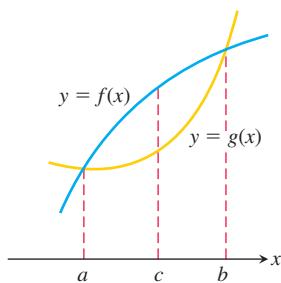
is a decreasing function of x .

c. Show that

$$\frac{dt}{dx} = \frac{x}{c_1 \sqrt{a^2 + x^2}} - \frac{d - x}{c_2 \sqrt{b^2 + (d - x)^2}}$$

is an increasing function of x .

69. Let $f(x)$ and $g(x)$ be the differentiable functions graphed here. Point c is the point where the vertical distance between the curves is the greatest. Is there anything special about the tangents to the two curves at c ? Give reasons for your answer.



70. You have been asked to determine whether the function $f(x) = 3 + 4 \cos x + \cos 2x$ is ever negative.

a. Explain why you need to consider values of x only in the interval $[0, 2\pi]$.
 b. Is f ever negative? Explain.

71. a. The function $y = \cot x - \sqrt{2} \csc x$ has an absolute maximum value on the interval $0 < x < \pi$. Find it.

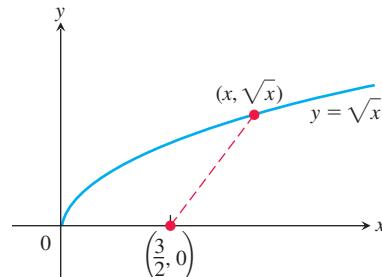
T b. Graph the function and compare what you see with your answer in part (a).

72. a. The function $y = \tan x + 3 \cot x$ has an absolute minimum value on the interval $0 < x < \pi/2$. Find it.

T b. Graph the function and compare what you see with your answer in part (a).

73. a. How close does the curve $y = \sqrt{x}$ come to the point $(3/2, 0)$? (Hint: If you minimize the *square* of the distance, you can avoid square roots.)

T b. Graph the distance function $D(x)$ and $y = \sqrt{x}$ together and reconcile what you see with your answer in part (a).



74. a. How close does the semicircle $y = \sqrt{16 - x^2}$ come to the point $(1, \sqrt{3})$?

T b. Graph the distance function and $y = \sqrt{16 - x^2}$ together and reconcile what you see with your answer in part (a).

4.7 Newton's Method

For thousands of years, one of the main goals of mathematics has been to find solutions to equations. For linear equations ($ax + b = 0$), and for quadratic equations ($ax^2 + bx + c = 0$), we can explicitly solve for a solution. However, for most equations there is no simple formula that gives the solutions.

In this section we study a numerical method called *Newton's method* or the *Newton-Raphson method*, which is a technique to approximate the solutions to an equation $f(x) = 0$. Newton's method estimates the solutions using tangent lines of the graph of $y = f(x)$ near the points where f is zero. A value of x where f is zero is called a *root* of the function f and a *solution* of the equation $f(x) = 0$. Newton's method is both powerful and efficient, and it has numerous applications in engineering and other fields where solutions to complicated equations are needed.

Procedure for Newton's Method

The goal of Newton's method for estimating a solution of an equation $f(x) = 0$ is to produce a sequence of approximations that approach the solution. We pick the first number x_0 of