Problem 1(a)

Graph the following functions using the first and the second
derivative. Mark all important points on each graph.
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Problem 1(a)

Graph the following functions using the first and the second
derivative. Mark all important points on each graph.
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Problem 1(b)
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Problem 1(b)




Problem 1(c)
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Problem 1(c)
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Problem 2

2. Assume that f has continuous second derivative and that
f"(x) > 0 for every x.
Can f have a local maximum? (1o 4 =1)
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Can f have more than one local minimum?
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Problem 2

Solution summary.

Can f have a local maximum?

No: any critical point must be a local minimum, by the second
derivative test.

Can f have no local minima?
Yes: for example f(x) = e* has f’(x) = e* > 0 but is always
increasing.

Can f have more than one local minimum?

No: by Rolle, ' has at most one x-intercept (as its derivative
is always positive), and therefore f has at most one critical
point, so it can have at most one local extremum of any kind.



