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5.1–5.3. Area and definite integral
Suppose you have a function y = f (x) on the interval [a,b]. At
first, assume that this is a positive function. We want to
approximate the area below its graph.
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5.1–5.3. Area and definite integral
A partition P of [a,b] is given by the numbers
a = x0 < x1 < . . . < xn = b, so it is a set P = {x0, x1, . . . , xn}.
Note that these numbers divide [a,b] into n intervals [xk−1, xk ],
with length ∆xk = xk − xk−1, where k = 1, . . . ,n. We call the
maximal length of these intervals the norm of the partition P:

||P|| = max
k

∆xk
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5.1–5.3. Area and definite integral
Now choose a point ck ∈ [xk−1, xk ] for each k = 1, . . . ,n. This
points are often called evaluation points.
Approximate the area under the graph on [xk−1, xk ] by the area
of the rectangle with width xk − xk−1 = ∆xk and height f (ck ).
The area of the rectangle is

f (ck )(xk − xk−1) = f (ck )∆xk

4



5.1–5.3. Area and definite integral
Now add up to approximate the area of y = f (x) on [a,b] by

f (c1)∆x1 + f (c2)∆x2 + . . .+ f (cn)∆xn

=
n∑

k=1

f (ck )∆xk

=
n∑

k=1

f (ck )(xk − xk−1)

This is called the Riemann
sum, or sometimes
approximating sum, for f on
[a,b].
We say that we approximate
the area by a Riemann sum.

Bernhard Riemann
(1826–1866) was a German
mathematician.
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5.1–5.3. Area and definite integral

A detour on the
∑

(“Sigma”) notation.
If we have numbers a1, . . . ,an, we write

a1 + a2 + . . .+ an =
n∑

i=1

ai =
n∑

k=1

ak

Similarly

a0 + a1 + . . .+ an =
n∑

i=0

ai

Compute:
3∑

i=0

i ,
3∑

i=0

i2,
3∑

i=0

5,
3∑

i=1

1
i
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5.1–5.3. Area and definite integral

Here is a famous formula:

n∑
i=1

i =
n(n + 1)

2

For example,
1 + 2 + 3 + · · ·+ 100 = 5050.
As the story goes, C. F. Gauss
proved this as a schoolchild by
regrouping:

Carl Friedrich Gauss
(1777–1855) was arguably the
greatest mathematician of all
time. He was Riemann’s
adviser.

(1 + 100) + (2 + 99) + (3 + 98) + · · ·+ (50 + 51) = 50 · 101
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5.1–5.3. Area and definite integral

We prove this by “telescoping,” writing

i =
1
2

[
(i + 1)2 − i2

]
− 1

2

and then

n∑
i=1

i =
1
2

n∑
i=1

[
(i + 1)2 − i2

]
− 1

2

n∑
i=1

1

=
1
2

[
(22 − 12) + (32 − 22) + (42 − 32) + . . .+ ((n + 1)2 − n2)

]
− 1

2
· n

=
1
2

[
−12 + (n + 1)2

]
− 1

2
· n

=
1
2

[
n2 + 2n − n

]
=

n(n + 1)
2
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5.1–5.3. Area and definite integral

Some other famous formulas:

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6
n∑

i=1

i3 =

(
n(n + 1)

2

)2
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5.1–5.3. Area and definite integral

Back to approximating an area by a Riemman sum.

area below y = f (x) on [a,b] ≈
n∑

k=1

f (ck )∆xk

=
n∑

k=1

f (ck )(xk − xk−1)

Example. Take the function y = x2 on [0,2]. Approximate the
area below the graph of this function with the Riemann sum
with n = 4 intervals and evaluation points ck chosen to be the
midpoints of each interval.
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5.1–5.3. Area and definite integral
So, all ∆xk = 1/2 and c1 = 1/4, c2 = 3/4, c3 = 5/4 and
c4 = 7/4. The Riemann sum is

1
2

[
(1/4)2 + (3/4)2 + (5/4)2 + (7/4)2

]
= 21/8 = 2.625.

(The exact area is 8/3 ≈ 2.667.)
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5.1–5.3. Area and definite integral
We may write the Riemann sum when f is not always positive,
in which case it gives negatives contributions from parts of the
graph below the x-axis. So the Riemann sum approximates the
difference between the area above the x-axis and the area
below the x-axis.
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5.1–5.3. Area and definite integral

Definition
The definite (or Riemann) integral of the function y = f (x) from
a to b (or over the interval [a,b]) is denoted by∫ b

a
f (x)dx

and defined as the limit of Riemann sums:∫ b

a
f (x)dx = lim

norm→0

n∑
k=1

f (ck )∆xk ,

provided that the limit is independent of the choice of evaluation
points ck .
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5.1–5.3. Area and definite integral

Theorem (Existence of Riemann integral)

If y = f (x) is continuous on [a,b], then it has∫ b

a
f (x)dx .

The same is true if y = f (x) is continuous except for finitely
many finite jumps.

The endpoints a and b are called bounds (or, confusingly,
limits) of integration. The area below the graph of y = f (x) is
defined through the integral .
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5.1–5.3. Area and definite integral
Example. (1) Compute

∫ b
a 3 dx . (2) Compute

∫ 1
0 x dx .

First get the answer by computing the area, and then by the
limit of Riemann sums!
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5.1–5.3. Area and definite integral

(1) We have f (x) = 3 for all x , so any Riemann sum:

n∑
k=1

f (ck )∆xk = 3
n∑

k=1

∆xk = 3(b − a)

and so ∫ b

a
3 dx = lim

norm→0

n∑
k=1

f (ck )∆xk = 3(b − a).
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5.1–5.3. Area and definite integral

(2) Now f (x) = x . We choose:
a partition of n intervals of equal length so that ∆xk = 1/n
for all k ;
the evaluation points ck to be the right endpoints, so that
c1 = 1/n, c2 = 2/n,. . . , cn = 1, that is ck = k/n.

So, ∫ 1

0
x dx = lim

norm→0

n∑
k=1

f (ck )∆xk

= lim
n→∞

n∑
k=1

k
n
· 1

n

= lim
n→∞

1
n2

n∑
k=1

k = lim
n→∞

1
n2 · n(n + 1)

2
=

1
2
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5.1–5.3. Area and definite integral

For a general interval, we get in a similar way∫ b

a
x dx =

b2

2
− a2

2

and ∫ b

a
x2 dx =

b3

3
− a3

3
.

We will soon have a much better methods to compute these
that by computing limits of Riemann sums.
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5.1–5.3. Area and definite integral
Note that the name of independent variable makes no
difference: ∫ b

a
f (x)dx =

∫ b

a
f (t)dt =

∫ b

a
f (□)d□.

We define ∫ a

b
f (x)dx = −

∫ b

a
f (x)dx

and so ∫ a

a
f (x)dx = 0.

Then we have interval additivity , valid for any a,b, c:∫ c

a
f (x)dx +

∫ b

c
f (x)dx =

∫ b

a
f (x)dx .
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5.1–5.3. Area and definite integral

We also have linearity : for any constant k∫ b

a
k f (x)dx = k

∫ b

a
f (x)dx

and for any functions f and g such that the integral exists∫ b

a
(f (x) + g(x))dx =

∫ b

a
f (x)dx +

∫ b

a
g(x)dx .
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5.1–5.3. Area and definite integral

Next is monotonicity . Assume a < b. If f (x) ≤ g(x) for all
x ∈ [a,b], then ∫ b

a
f (x)dx ≤

∫ b

a
g(x)dx .

In particular, if M is a constant and f (x) ≤ M for for all
x ∈ [a,b], then ∫ b

a
f (x)dx ≤ M(b − a)

If m is a constant and f (x) ≥ m for for all x ∈ [a,b], then∫ b

a
f (x)dx ≥ m(b − a)
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5.1–5.3. Area and definite integral

The average av(f ) of y = f (x) on [a,b] is a constant such that
its integral equals

∫ b
a f (x)dx . So,

(b − a) · av(f ) =
∫ b

a
f (x)dx ,

and so

av(f ) =
1

b − a

∫ b

a
f (x)dx

Note that, when ∆xk = (b − a)/n (all intervals are of equal
length),

av(f ) =
1

b − a

∫ b

a
f (x)dx ≈ 1

b − a

n∑
i=1

f (ci)
b − a

n
=

1
n

n∑
i=1

f (ci).
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5.1–5.3. Area and definite integral
Example. Compute the average of f (x) = x2 + 3x on [0,2].
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5.1–5.3. Area and definite integral

Example. Compute the average of f (x) = x2 + 3x on [0,2].
We apply the formula, for which we need to compute∫ 2

0
(x2 + 3x)dx =

∫ 2

0
x2 dx + 3

∫ 2

0
x dx

=
23 − 0

3
+ 3 · 22 − 0

2
=

26
3

and so

av(f ) =
1
2
· 26

3
=

13
3
.
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5.1–5.3. Area and definite integral

Other than area, the definite integral has many other
applications. We can use the definite integral to compute the
change in distance if an object moves on a straight line with
variable velocity v(t) between two times t = a and t = b.
During a short time interval [ti−1, ti ], we may assume that the
velocity is nearly constant, equal to v(ci) for some ci ∈ [ti−1, ti ].
So, during this short interval, the change in distance is
≈ v(ci)(ti − ti−1) = v(ci)∆ti and the total change in distance is
approximately

n∑
i=1

v(ci)∆ti

and thus equals ∫ b

a
v(t)dt .
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5.1–5.3. Area and definite integral

Similarly, if a(t), t ≥ 0 is the acceleration of an object started at
rest v(0) = 0, then its velocity at time b is

v(b) =
∫ b

0
a(t)dt .
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8.7. Estimation of the definite integral

We will learn how to compute the definite integral exactly in
many cases. However, very often the exact computation is
impossible. So we must rely on approximations. We will
discuss three of them.
1. Rectangular method. This simply approximates the integral
by a Riemann sum:∫ b

a
f (x)dx ≈

n∑
k=1

f (ck )∆xk .
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8.7. Estimation of the definite integral
1. Trapezoidal method. Approximate f by a linear function
connecting the endpoints of its graph on each [xk−1, xk ]. So, on
each [xk−1, xk ], the area is approximated by

1
2
(f (xk−1) + f (xk )) ·∆xk

and so we get∫ b

a
f (x)dx ≈

n∑
k=1

1
2
(f (xk−1) + f (xk )) ·∆xk .

28



8.7. Estimation of the definite integral

∫ b

a
f (x)dx ≈

n∑
k=1

1
2
(f (xk−1) + f (xk )) ·∆xk .

If ∆xk = ∆x = (b − a)/n for all k , the approximation is:

∆x
[

1
2

f (x0) +
1
2

f (x1)

+
1
2

f (x1) +
1
2

f (x2)

+
1
2

f (x2) +
1
2

f (x3)

· · ·

+
1
2

f (xn−1) +
1
2

f (xn)

]
, so

∫ b

a
f (x)dx ≈ ∆x

2
[f (x0) + 2f (x1) + 2f (x2) + · · ·+ 2f (xn−1) + f (xn)]
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8.7. Estimation of the definite integral
3. Simpson’s method. We assume that ∆xk = ∆x = (b−a)/n
for all k , and that n is even. We approximate f on two
successive intervals by quadratic parabola, and get∫ b

a
f (x)dx ≈ ∆x

3
[f (x0) + 4f (x1) +2f (x2) + 4f (x3) + 2f (x4) + · · ·

+ 2f (xn−2) + 4f (xn−1) + f (xn)]

For all three methods there are
error estimates (see the book),
which will not be required.

Thomas Simpson (1710–1761)
was a British mathematician.
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8.7. Estimation of the definite integral

Example. Estimate ∫ 1

0

x
1 + x2 dx

using 4 intervals of equal length and each of the three methods:

(1) rectangular method with evaluation points the right
endpoints;

(2) trapezoidal method;
(3) Simpson’s method.

In the cases (1) and (2), also determine whether the
approximation is smaller or larger than the true value.
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8.7. Estimation of the definite integral

We have
f (x) =

x
1 + x2

We compute

f ′(x) =
1 − x2

(1 + x2)2 , f ′′(x) =
−2x(3 − x2)

(1 + x2)3

and we conclude that the function is increasing and concave
down on [0,1].

We also need these values:

x f (x)
0 0

1/4 4/17
1/2 2/5
3/4 12/25
1 1/2
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8.7. Estimation of the definite integral
(1) Estimate ∫ 1

0

x
1 + x2 dx

using 4 intervals of equal length and rectangular method with
evaluation points the right endpoints.
The answer is

1
4

f (1/4) +
1
4

f (1/2) +
1
4

f (3/4) +
1
4

f (1) ≈ 0.4038

and is larger than the true value as f is increasing.
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8.7. Estimation of the definite integral
(2) Estimate ∫ 1

0

x
1 + x2 dx

using 4 intervals of equal length and trapezoidal method.
The answer is

1
8
[f (0) + 2f (1/4) + 2f (1/2) + 2f (3/4) + f (1)] ≈ 0.3413

and is smaller than the true value as f is concave down.
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8.7. Estimation of the definite integral

(3) Estimate ∫ 1

0

x
1 + x2 dx

using 4 intervals of equal length and Simpson’s method.
The answer is

1
12

[f (0) + 4f (1/4) + 2f (1/2) + 4f (3/4) + f (1)] ≈ 0.3468

The correct value is 1
2 ln2 ≈ 0.3466.

35



8.7. Estimation of the definite integral
A follow-up question. Suppose you estimate∫ 1

0

x
1 + x2 dx

using 4 intervals of equal length and rectangular method, but
now evaluation points are midpoints. Is the approximation
larger or smaller?
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8.7. Estimation of the definite integral

On each subinterval, the area of the rectangle is the same as
the area of the trapezoid formed by the tangent at the
evaluation point. By concavity, the tangent is above the graph,
so the area of the trapezoid is larger.
Answer: the approximation is larger .
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