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4.8. Antiderivatives

If F and f are two functions defined on some open interval, and
F ′(x) = f (x) for all x , then we call F the antiderivative (also
known as indefinite integral) of f . We write∫

f (x)dx = F (x) + C,

emphasizing that we can add a constant C to F without
affecting its derivative.

Example. As (1
2 sin2x)′ = cos(2x), F (x) = 1

2 sin2x is an
antiderivative of cos(2x).
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4.8. Antiderivatives

Theorem
If F1 and F2 are two antiderivatives of f , they differ by a
constant; that is F ′

1 = f and F ′
2 = f implies that, for some

constant C, F2(x) = F1(x) + C for all x.

Proof.
As (F1 − F2)

′ = 0, F1 − F2 is a constant function.

Example. It follows that all antiderivatives of cos(2x) are
1
2 sin2x + C.
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4.8. Antiderivatives

Every derivative formula is an antiderivative formula (below, k is
a constant).

function antiderivative
xn 1

n+1 xn+1 + C, if n ̸= −1
1
x ln |x |+ C

sin(kx) − 1
k cos(kx) + C

cos(kx) 1
k sin(kx) + C

sec2(kx) = 1
cos2(kx)

1
k tan(kx) + C

ekx 1
k ekx + C

1√
1−k2x2

1
k arcsin(kx) + C

1
1+k2x2

1
k arctan(kx) + C
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4.8. Antiderivatives

If F is the antiderivative of f , we write

F (x) =
∫

f (x)dx ,

which is where the phrase indefinite integral comes from. The
reason for similarity to the definite integral in name and notation
will be revealed soon.

This notation is due to Leibniz
(1686).

Gottfried Wilhelm von Leibniz
(1646–1716) was a German
mathematician and
philosopher.
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4.8. Antiderivatives

Example. We have∫
1√

1 − x2
dx = arcsin x + C,∫

1√
1 − x2

dx = − arccos x + C,

We have two different answers. Something wrong?

No! The two functions differ by a constant:
arcsin x = − arccos x + π

2
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4.8. Antiderivatives

Because of analogous properties for derivatives:

Theorem
For a constant c,∫

cf (x)dx = c
∫

f (x)dx ,∫
(f (x)± g(x))dx =

∫
f (x)dx ±

∫
g(x)dx

Example. ∫
(x + 5 sin x)dx =

1
2

x2 − 5 cos x + C

∫
(2x10 + 3

√
x)dx =

∫
(2x10 + 3x1/2)dx =

2
11

x11 + 2x3/2 + C
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5.4. The fundamental theorem of calculus

Theorem (First Fundamental Theorem of Calculus)
Let f be a continuous function on an open interval containing
[a,b]. For x in [a,b], let

G(x) =
∫ x

a
f (t)dt .

Then G is differentiable on [a,b] and its derivative is f . That is
G′(x) = f (x).

This theorem was proved by
Isaac Newton at the end of
17th century. Isaac Newton
(1643–1727) was an English
mathematician, physicist,
astronomer, and theologian. He
is one of the most influential
scientists of all time.
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5.4. The fundamental theorem of calculus

Theorem (Mean Value Theorem, on the way to proving FFTC)

Assume f is continuous on [a,b]. Then there exist a c ∈ [a,b]
so that ∫ b

a
f (x)dx = f (c)(b − a)

Proof.
If m is the minimum, and M is the maximum, of f on [a,b],

m(b − a) ≤
∫ b

a
f (x)dx ≤ M(b − a)

that is, the average value of f is between m and M:

m ≤ 1
b − a

∫ b

a
f (x)dx ≤ M.

By the IVT, any number between m and M is a value of f .
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5.4. The fundamental theorem of calculus

Proof of FFTC.

Recall that G(x) =
∫ x

a f (t)dt . We need to show that
G′(x) = f (x). We will do so by definition of the derivative. Note
that

G(x + h) =
∫ x+h

a
f (t)dt =

∫ x

a
f (t)dt +

∫ x+h

x
f (t)dt

and so

G(x + h)− G(x)
h

=

∫ x+h
x f (t)dt

h
= f (c)

by MVT, for some c between x and x + h.
As h → 0, c → x and, by continuity, f (c) → f (x).
So, by the limit definition of the derivative, G′(x) = f (x).
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5.4. The fundamental theorem of calculus

Theorem (Second Fundamental Theorem of Calculus)
Let f be a continuous function on an open interval containing
[a,b], and assume that F is any antiderivative of f . Then∫ b

a
f (x)dx = F (b)− F (a).
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5.4. The fundamental theorem of calculus

Proof of SFTC.

By FFTC, the function G(x) =
∫ x

a f (t)dt is an antiderivative of f .
So is F (x). It follows that G and F differ by a constant:∫ x

a
f (t)dt = F (x) + C.

Plug in x = a to get C = −F (a). Plug in x = b to get:∫ b

a
f (t)dt = F (b)− F (a).
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5.4. The fundamental theorem of calculus

Example. Compute
∫ 4

1 x2 dx
Here f (x) = x2, so its antiderivative F (x) = x3

3 . The SFTC says
that ∫ 4

1
x2 dx = F (4)− F (1)

We often summarize this in shorhand notation:∫ 4

1
x2 dx =

x3

3

∣∣∣x=4

x=1
=

x3

3

∣∣∣4
1
=

43

3
− 1

3
= 21
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5.4. The fundamental theorem of calculus

Example. Compute ∫ π/2

0
sin x dx

Answer: ∫ π/2

0
sin x dx = − cos x

∣∣∣x=π/2

x=0
= 1.
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5.4. The fundamental theorem of calculus
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5.4. The fundamental theorem of calculus

Example. (a) Compute ∫ 2

1

1
x

dx

(b) Can you apply FTC to ∫ 2

0

1
x

dx ?

Answer to (a): ∫ 2

1

1
x

dx = ln x
∣∣∣2
1
= ln2.

Answer to (b): no, because the function f (x) = 1/x is not
continuous on [0,2].
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5.4. The fundamental theorem of calculus

Example. Another potential problem is inability to find
antiderivative, such as for ∫ 1

0
ex2

dx

In this case, we have to use an estimation method. It turns out
that this integral equals, to 30 decimal places:

1.462651745907181608804048586857
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5.4. The fundamental theorem of calculus

Example. Compute:

(a)
d
dx

∫ x

0
ln(1 + t2)dt

(b)
d
dx

∫ x2

0
ln(1 + t2)dt

(c)
d
dx

∫ 10

x
ln(1 + t2)dt

(d)
d
dx

∫ x2

x
ln(1 + t2)dt

(e) lim
x→0

∫ x
0 ln(1 + t2)dt

x3

Here, we practice the first FTC.
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5.4. The fundamental theorem of calculus

Example. Compute:

(a)
d
dx

∫ x

0
ln(1 + t2)dt = ln(1 + x2)

(b)
d
dx

∫ x2

0
ln(1 + t2)dt = ln(1 + x4) · 2x

(c)
d
dx

∫ 10

x
ln(1 + t2)dt = − ln(1 + x2)

(d)
d
dx

∫ x2

x
ln(1 + t2)dt = ln(1 + x4) · 2x − ln(1 + x2)

(e) lim
x→0

∫ x
0 ln(1 + t2)dt

x3 = lim
x→0

ln(1 + x2)

3x2 = lim
x→0

1
1+x2 · 2x

6x
=

1
3
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5.5. Substitution in indefinite integrals

Example. Compute ∫
cos(x2) · 2x dx

We have this situation:∫
f (g(x)) · g′(x)dx

We can handle such integral by the substitution method, which
is an application of the chain rule.
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5.5. Substitution in indefinite integrals

Theorem (The substitution rule)

Assume that F (x) is the antiderivative of f (x). Then F (g(x)) is
the antiderivative of f (g(x)) · g′(x).

Proof.
By the chain rule

d
dx

F (g(x)) = F ′(g(x)) · g′(x) = f (g(x)) · g′(x).

Commonly, we use another variable, like u, to “substitute” for
g(x).
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5.5. Substitution in indefinite integrals

Example. Compute ∫
cos(x2) · 2x dx

If u = g(x) = x2, the du = g′(x)dx = 2x dx . So we need to
compute exactly the antiderivative of
cos(g(x)) · g′(x)dx = cos(u)du.

The answer, by the theorem (applied to f = cos and g(x) = x2),
is

sinu + C = sin(g(x)) + C = sin(x2) + C.
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5.5. Substitution in indefinite integrals

Example. Compute ∫
7x2

x3 + 5
dx

∫
7x2

x3 + 5
dx =

7
3

∫
3x2

x3 + 5
dx

Now u = x3 + 5, du = 3x2 dx , gives

7
3

∫
3x2

x3 + 5
dx =

7
3

∫
1
u

du =
7
3
ln |u|+ C =

7
3
ln |x3 + 5|+ C
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5.5. Substitution in indefinite integrals

Example. Compute ∫
(3x + 5)10 dx

Now, u = 3x + 5, du = 3 dx , dx = 1
3 du, gives

1
3

∫
u10 du =

1
33

u11 + C =
1

33
(3x + 5)11 + C
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5.5. Substitution in indefinite integrals

Example. Compute ∫
x3

√
5x2 + 7

dx

∫
x3

√
5x2 + 7

dx =

∫
x2

√
5x2 + 7

· x dx

Now u = 5x2 + 7, du = 10x dx , 1
10du = x dx , x2 = 1

5(u − 7),
gives

1
50

∫
u − 7√

u
du

24



5.5. Substitution in indefinite integrals

Example. Compute ∫
x3

√
5x2 + 7

dx

∫
x3

√
5x2 + 7

dx =

∫
x2

√
5x2 + 7

· x dx

Now u = 5x2 + 7, du = 10x dx , 1
10du = x dx , x2 = 1

5(u − 7),
gives

1
50

∫
u − 7√

u
du

24



5.5. Substitution in indefinite integrals

Example. Compute ∫
x3

√
5x2 + 7

dx

∫
x3

√
5x2 + 7

dx =

∫
x2

√
5x2 + 7

· x dx

Now u = 5x2 + 7, du = 10x dx , 1
10du = x dx , x2 = 1

5(u − 7),
gives

1
50

∫
u − 7√

u
du

24



5.5. Substitution in indefinite integrals

1
50

∫
u − 7√

u
du

=
1

50

∫
(u1/2 − 7u−1/2)du

=
1

50

(
1

3/2
u3/2 − 7

1
1/2

u1/2
)
+ C

=
1

50

(
2
3

u3/2 − 14u1/2
)
+ C

=
1

50

(
2
3
(5x2 + 7)3/2 − 14(5x2 + 7)1/2

)
+ C
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5.5. Substitution in indefinite integrals

Example. Compute ∫
x2

(2x + 1)3 dx

Now, u = 2x + 1, du = 2 dx , dx = 1
2 du, x = 1

2(u − 1), gives

1
8

∫
(u − 1)2

u3 du =
1
8

∫
u2 − 2u + 1

u3 du

=
1
8

∫ (
u−1 − 2u−2 + u−3

)
du

=
1
8

(
ln |u|+ 2u−1 − 1

2
u−2

)
+ C

and substitute back u = 2x + 1 for the final answer.
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