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6.1. Volumes using cross-sections
Assume that we cut a body with a plane perpendicular to some
axis, which we call the x-axis. If that plane is at x , call the area
of that cross-section A(x). Assume that the body extends from
x = a to x = b.

A prism with base of area A(x) and height ∆x has volume
A(x)∆x .

Now imagine that the body is cut into thin slices with planes at
xi , of width ∆xi . Then the volume of the body is approximated

by
n∑

i=1

A(xi)∆xi and therefore equals
∫ b

a
A(x)dx .
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6.1. Volumes using cross-sections
Suppose you revolve a region between two graphs y = R(x)
(upper graph) and y = r(x) (lower graph), on the interval [a,b],
around the x-axis. How do we compute the volume of this
region?

The resulting cross-section at x (by a plane perpendicular to
the x-axis) is the region between two circles, the outer circle
with radius R(x) and the inner circle with radius r(x). Its area is
πR(x)2 − πr(x)2, and so

Volume =

∫ b

a
π(R(x)2 − r(x)2)dx

=

∫ b

a
π((outer radius)2 − (inner radius)2)dx
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6.1. Volumes using cross-sections

We are dividing the region into thin “washers,” so this is called
the washer method.

Example. Rotate the region below the graph of y = x2 on [0,1]
around the x-axis. Compute the volume.

Volume = π

∫ 1

0
x4 dx =

π

5
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6.1. Volumes using cross-sections

Example. Rotate the region bounded by the graphs of y = x2

and y = 3x − 2 around (a) the x-axis and (b) the line y = 1. Set
up the integrals for the volume in each case.

Intersections: x2 − 3x + 2 = 0, (x − 2)(x − 1) = 0, x = 1,2.
Intersections are (1,1) and (2,4), and y = 3x − 2 is the top
function on [1,2]. Both functions are increasing on [1,2], so no
part of the region is below the line y = 1.

(a) π
∫ 2

1
((3x − 2)2 − (x2)2)dx

(Multiply out and integrate powers.)

(b) Now outer radius = 3x − 2 − 1, inner radius = x2 − 1.

π

∫ 2

1
((3x − 3)2 − (x2 − 1)2)dx

(Again, multiply out and integrate powers.)
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6.1. Volumes using cross-sections

Example. Compute the volume of the ball with radius r .

We rotate the top part of the circle x2 + y2 = r2 around the
x-axis, that is, the region below the graph of y =

√
r2 − x2 on

[−r , r ].

Volume = π

∫ r

−r
(r2 − x2)dx = 2π

∫ r

0
(r2 − x2)dx

= 2π
(

r2x − 1
3

x3
) ∣∣∣r

0

=
4
3
πr3
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6.2. Volumes using cylindrical shells

A region R bounded between x = a and x = b is rotated
around the y -axis. Resulting volume?

Divide R into thin vertical strips; the strip at x has height h(x)
and width ∆x . When rotated, such a strip generates a thin
cylindrical shell. When cut vertically and unfolded, this shell is a
thin rectangular plate with volume 2πxh(x)∆x . So the volume

is approximated by
n∑

i=1

2πxih(xi)∆xi and therefore equals

Volume =

∫ b

a
2πx h(x)dx

=

∫ b

a
2π(radius of the shell) (height of the shell)dx
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6.2. Volumes using cylindrical shells

We are dividing the region into thin shells, so this is called the
shell method. For example, if we are rotating a region between
the graphs of f (x) (upper function) and g(x) (lower function)
around the y axis, the resulting volume is

Volume =

∫ b

a
2πx (f (x)− g(x))dx

Example. Rotate the region below the graph of y = x2 on [0,1]
around the y -axis. Compute the volume.

Volume = 2π
∫ 1

0
x · x2 dx =

π

2
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6.2. Volumes using cylindrical shells

Example. Rotate the region bounded by the graphs of y = x2

and y = 3x − 2 around (a) the y -axis and (b) the line x = −1.
Set up the integrals for the volume in each case.

We know that intersections are (1,1) and (2,4), and y = 3x − 2
is the top function on [1,2].

(a) 2π
∫ 2

1
x ((3x − 2)− x2)dx

(b) Now radius of the shell = (x + 1),
height of the shell = ((3x − 2)− x2).

2π
∫ 2

1
(x + 1) ((3x − 2)− x2)dx
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6.2. Volumes using cylindrical shells
Example. Rotate the region bounded by y =

√
x ,

y = 2
√

x − 12 and y = 0 around the x axis. Volume?

Intersection:
√

x = 2
√

x − 12, x = 4(x − 12), 3x = 48, x = 16.
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6.2. Volumes using cylindrical shells

We can write the volume by the washer method as

π

∫ 12

0
x dx + π

∫ 16

12
(x − 4(x − 12))dx

Or, we can use the shell method, using that:
the left curve y =

√
x is x = y2; and

the right curve y = 2
√

x − 12 is x = y2/4 + 12.
This gives the area as

2π
∫ 4

0
y
(

y2

4
+ 12 − y2

)
dx = 2π

∫ 4

0

(
12y − 3y3

4

)
dy

= . . . = 96π
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6.1–6.2. Volumes of solids of rotation, review

method thin strips integrate
washer are perpendicular to axis of rotation π((outer radius)2 − (inner radius)2)

make “washers” when rotated
shell are parallel to axis of rotation 2π(radius of shell)(height of shell)

make “shells” when rotated
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6.1–6.2. Volumes of solids of rotation, review

Example. Consider the region bounded by y = e2x , y = ex and
x = 1. Set up the integral for the volume when this region is
rotated around:

1 y -axis: 2π
∫ 1

0
x(e2x − ex)dx

2 x = −1: 2π
∫ 1

0
(x + 1)(e2x − ex)dx

3 x = 1: 2π
∫ 1

0
(1 − x)(e2x − ex)dx

4 x-axis: π

∫ 1

0
(e4x − e2x)dx

5 y = −1: π

∫ 1

0
((e2x + 1)2 − (ex + 1)2)dx

6 y = 9: π

∫ 1

0
((9 − ex)2 − (9 − e2x)2)dx
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