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6.3. Arc Length

We want to compute the length of the curve given by y = f(x)
for x in [a, b).

The length of the curve As between x and x + Ax is
approximated by the length of the secant. So,

2
AS? ~ AX? + Ay?, As~~ /AX2+ Ay? = 1+(§};> Ax

Further,
Ay  f(x+ Ax) — ()
Ax Ax

As ~ /1 + f'(x)2 Ax

2

~ f(x)

so that



6.3. Arc Length

Now imagine that the curve is cut into small pieces between x;
and x; + Ax; of length As;.

Then the total arc length is approximated by

n n
ZAS; ~ Z \/1 + f/(X,')2AX,'
i=1 i=1

and therefore equals

b
Arc Length = / 1+ f/(x)2 dx.
WV (x)



Arc Length :/b\/1 +f’(x)2dx:/b\/1 + (i)zdx.

If we write the arc length from ato x as

s(x) = /ax J1+ P02 o,

& =1+ (2)

which is sometimes suggestively written as

then

ds? = dx? + dy?,

the differential form of the Pythagorean theorem.
a4



6.3. Arc Length

Example. Compute the arc length of y = 2x3/2 between x = 0
and x = 1.

We have % = 3x'/2 and so

1 dy 2
Arc Length _/o \[1+ <dx> ax

)
:/ V14 9xdx
0

_12 32| _ 2 182
— 55 (1+9%) ‘0_27(10 1)



6.3. Arc Length

Arc length integrals are commonly impossible or at least very
hard.

Example. Compute the arc length of the parabola y = x?
between x = 0 and x = 1. Now % = 2x, so

1 1
ArcLength:/ \/1+4x2dx:2/ \/%+x2dx:(*)
0 0

We can use the formula

/\/32+x2dx:X\/aZ+x2+a22|n(x+ a+x%)+C

2

This can be obtained by a trigonometric substitution, similarly to
a discussion problem.



6.3. Arc Length

This gives

+%In (2+\/5) ~ 1.4789

oG

Check: this needs to be between /2 (the diagonal of the
square) and 2 (two sides of the square)!



6.4. Area of surfaces of revolution

We rotate the graph of y = f(x) between x =aand x = b
around the x axis. We want to compute the area of the resulting
solid of revolution.



6.4. Area of surfaces of revolution

What area do we get when we rotate a line segment between x
and x + Ax, of length As, around the x-axis? This is the area
of a “frustrum” of a cone. If we cut and flatten the cone, we get
the area between two circular segments. Let £ be the radius of
the smaller circle so that ¢ + As is the radius of the larger one.
Also denote by 6 the angle of the opening of the segments. The
smaller arc has length 27 f(x). The area of the frustrum then is

1 1
%(z + As)%0 — 5626 = E9(62 +20As + As? — (?)

~ O/AS
= 2nf(x)As



6.4. Area of surfaces of revolution

So, the surface area is approximated by
> 2nf(x)Asi =Y 2rf(x)\/1 4 F(x)? Ax;
i i
and so

Surface Area _/ 2rf(x)y/ 1+ f/(x)? dx
/ 2ny ds

:/ 2 (radius of rotation) ds
a



6.4. Area of surfaces of revolution

Example. Rotate y = v/x, x in [1, 2], around the x-axis.
Compute the resulting surface area.

1

We compute f'(x) = 5

B

2
Surface Area = / 2rf(x)\/1 + f/(x)2 dx
1
2 1
= / 2mv/xy /1 4+ — dx
1 4x

2
:w/ vVax +1dx

2
3
3/2

‘ —_

(4x+ 1722
53/2)

X=

A-b

1
(9 (27 — 5V/5)

ol >1

.
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6.4. Area of surfaces of revolution

Surface area integrals are typically even harder than arc length
ones.

Example. Rotate y = x2, x in [0, 1], around the x-axis.
Compute the resulting surface area.

We compute f'(x) = 2x.

|
Surface Area :/ 2rf(x)\/1 + f/(x)2 dx
0

]
= [ 27x2\V/1 + 4x2dx

0

1

3

:47r/ X2\ + x2 dx
0 4



6.4. Area of surfaces of revolution

We use the formula
/XZ\/ a2 + x2 dx
= %(a2 +2x®)V a2 +x2 - 382 In(x+va®+x2)+C

Surface Area

—47r/ \/f—O—deX
B 1 o\ /1 s /1 o

9mv5
=5 —33|(2+f) ~ 3.8097




6.4. Area of surfaces of revolution

Example. Rotate y = v/x, x in [1, 2], around the line y = —1.
Set up the integral for the resulting surface area.

We compute f'(x) = 2\1—& Recall:

b
Surface Area = / 27 (radius of rotation) ds

a

so in this case

2
Surface Area:/ 2r(Vx + 1) /1 +41—de
1

(It is possible to compute [ /1 + 41—)( dx by substitution
14 25 =u2)



6.4. Area of surfaces of revolution

Example. Rotate y = &%, x in [0, 1], (a) around the y-axis, (b)
around the line x = 2. Set up the integral for the resulting
surface area.

We have two options. If we integrate over x, the radius of
rotation is simply x. As % = e, we get for (a)

|
Surface Area = / 27 (radius of rotation) ds
0
|
= [ 27axv1+e2Xdx
0
and for (b)

]
Surface Area = / 2m(2 — x)V/1 + e dx
0
15



6.4. Area of surfaces of revolution

The second option is to integrate over y, in which case we write
the curve as x = Iny. We have & = 1 and ds? = dx? + dy?

gives
dx\ 2 1
= /1 — =4/1+—d
V +(af}/) v Rz
(a) So, integrating over the range of y, which is from 1 to e,

Surface Area = / 27 (radius of rotation) ds

/ 2riny 1+ dy

(b) The same approach now gives

e
Surface Area = / 2r(2—Iny) /1 + ;2 dy
1
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6.6. Centroids

Imagine a seesaw along the x-axis with the pivot point
(“fulcrum”) at x = k. Children with masses my, mo, ..., m, sit at
locations xq, Xo, ..., X5. The moment of such seesaw is the sum
of all (mass)-(length of the lever) terms:

z”: mi(x; — k)
i—

Multiplying also by g, the gravity acceleration, this gives the
torque, or the rotational force, which measure the rotational
tendency of the system: more precisely, it equals the derivative
of the angular momentum.



6.6. Centroids

In order for the system to be in the equilibrium, the torque must
be 0, or equivalently

n
Z mi(Xi - k) = 07
=1
or .
K — > oimq MiX
S mi

which we call the center of mass.



6.6. Centroids

Assume that we have a thin plate shaped like a planar region R
of constant density 1 (per unit area). Then the point (x,y) at
which we can balance the plate is called the centroid of R.



6.6. Centroids

Assume R extends between lines x = aand x = b. Assume
also that the length of the intersection between the vertical line
at x and the region is h(x).

We can compute the moment about the line x = k as follows

/b(x — k)h(x) dx.

In particular, the moment about the y-axis (x = 0) is

b
My:/ xh(x) dx.
a
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6.6. Centroids

Therefore, x needs to satisfy

/b(x — X)h(x) dx = 0,

that is b

Jaxh(x)dx M,

fab h(x)ax  Area(R)

Similarly, if the R extends between lines y = cand y = d and
the length of the intersection between the horizontal line at y

and the region is w(y), then we define the the moment about
the x-axis

X =

d
My = / yw(y)ay.
C

and we get

y_leywndy M
fcd w(y) dy Area(R)
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6.6. Centroids

J ab xh(x)ax M,
[P h(x)ax — Area(R)
Sy dy My
fcd w(y) dy Area(R)

x|
Il

<l

By shell method,

d
2rMy = / 2nyw(y) dy = Volume of R rotated around x-axis.
Cc

Similarly,

b
2rM, = / 27xh(x) dx = Volume of R rotated around y-axis.
a

So we get Pappus Theorem:

Volume of R rotated around x-axis = 27y Area(R)

bl



6.6. Centroids

Example. Let R be the region under the graph of y = x2 on
[0, 1]. Compute the centroid of R. Is it inside the region?

We have h(x) = x2, so

Y_f01x~x2dx_m_§
Joxzax  1/3 4

21



6.6. Centroids

For y, we observe that w(y) =1 — ,/y, so that

Jo (1 = v/y) dy
Area(R)

y=

There is an easier option! The numerator is

1 : 1 1 1
—-(Volume of R rotated around x-axis) = -7T/ xtadx = —
27 2t Jo

and so
1/10 3

Y=37/3 " 10

To check whether (X, ) is inside R, we check whether y < X2,
which holds, so the answer is yes.

24



6.6. Centroids

Now rotate the same region R around the line y = 2x — 3.
What is the resulting volume?

By Pappus, the volume equals
27 - (distance between (X, y) and the axis) - Area(R)

The formula for the distance between a line given by
Ax + By + C = 0 and the point (X, y) is given by the formula
|AX + By + C|
A /A2 + B2

In our case, the lineis 2x — y — 3 = 0 and so

3 3
Vqume:27r-‘2'Z_ﬁ_3|-1 6

VE+1 3 55
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6.6. Centroids

Example. Volume of torus; we obtain a torus by rotating a
circle of radius r centered at (0, a), a > r, around the x-axis.

The centroid of the circle clearly is (a,0). So by Pappus

Volume = 2ra- nr® = 2x°ar®
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