Week 7 Lectures

Janko Gravner

MAT 21B

Fall 2023

We want to compute the length of the curve given by y = f(x)for x in [a, b].

The length of the curve Δs between x and $x + \Delta x$ is approximated by the length of the secant. So,

$$\Delta s^2 \approx \Delta x^2 + \Delta y^2, \quad \Delta s \approx \sqrt{\Delta x^2 + \Delta y^2} = \sqrt{1 + \left(\frac{\Delta y}{\Delta x}\right)^2 \Delta x}$$

Further.

Further,
$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x} \approx f'(x)$$

so that

$$\Delta s \approx \sqrt{1 + f'(x)^2} \, \Delta x$$

Now imagine that the curve is cut into small pieces between x_i and $x_i + \Delta x_i$ of length Δs_i .

Then the total arc length is approximated by

$$\sum_{i=1}^n \Delta s_i \approx \sum_{i=1}^n \sqrt{1 + f'(x_i)^2} \, \Delta x_i$$

and therefore equals

Arc Length =
$$\int_{a}^{b} \sqrt{1 + f'(x)^2} \, dx.$$

2

Arc Length =
$$\int_a^b \sqrt{1 + f'(x)^2} dx = \int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$
.

If we write the arc length from a to x as

$$s(x) = \int_a^x \sqrt{1 + f'(t)^2} dt,$$

then

$$\frac{ds}{dx} = \sqrt{1 + f'(x)^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

which is sometimes suggestively written as

$$ds^2 = dx^2 + dy^2,$$

the differential form of the Pythagorean theorem.

Example. Compute the arc length of $y = 2x^{3/2}$ between x = 0 and x = 1.

We have $\frac{dy}{dx} = 3x^{1/2}$ and so

Arc Length =
$$\int_0^1 \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

= $\int_0^1 \sqrt{1 + 9x} dx$
= $\frac{1}{9} \frac{2}{3} (1 + 9x)^{3/2} \Big|_0^1 = \frac{2}{27} (10^{3/2} - 1)$

E

Arc length integrals are commonly impossible or at least very hard.

Example. Compute the arc length of the parabola $y = x^2$ between x = 0 and x = 1. Now $\frac{dy}{dx} = 2x$, so

Arc Length =
$$\int_0^1 \sqrt{1 + 4x^2} \, dx = 2 \int_0^1 \sqrt{\frac{1}{4} + x^2} \, dx = (*)$$

We can use the formula

$$\int \sqrt{a^2 + x^2} \, dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \ln(x + \sqrt{a^2 + x^2}) + C$$

This can be obtained by a trigonometric substitution, similarly to a discussion problem.

6

This gives

$$(*) = 2\left[\frac{x}{2}\sqrt{\frac{1}{4} + x^2} + \frac{1}{8}\ln\left(x + \sqrt{\frac{1}{4} + x^2}\right)\right]\Big|_{x=0}^{x=1}$$

$$= 2\left[\frac{1}{2}\sqrt{\frac{5}{4}} + \frac{1}{8}\ln\left(1 + \sqrt{\frac{5}{4}}\right) - \frac{1}{8}\ln\frac{1}{2}\right]$$

$$= \frac{\sqrt{5}}{2} + \frac{1}{4}\ln\left(2 + \sqrt{5}\right) \approx 1.4789$$

Check: this needs to be between $\sqrt{2}$ (the diagonal of the square) and 2 (two sides of the square)!

-

We rotate the graph of y = f(x) between x = a and x = b around the x axis. We want to compute the area of the resulting solid of revolution.

What area do we get when we rotate a line segment between x and $x + \Delta x$, of length Δs , around the x-axis? This is the area of a "frustrum" of a cone. If we cut and flatten the cone, we get the area between two circular segments. Let ℓ be the radius of the smaller circle so that $\ell + \Delta s$ is the radius of the larger one. Also denote by θ the angle of the opening of the segments. The smaller arc has length $2\pi f(x)$. The area of the frustrum then is

$$egin{aligned} rac{1}{2}(\ell+\Delta s)^2 heta - rac{1}{2}\ell^2 heta &= rac{1}{2} heta(\ell^2+2\ell\Delta s+\Delta s^2-\ell^2) \ &pprox heta\ell\Delta s \ &= 2\pi f(x)\Delta s \end{aligned}$$

Ç

So, the surface area is approximated by

$$\sum_{i} 2\pi f(x_i) \Delta s_i \approx \sum_{i} 2\pi f(x_i) \sqrt{1 + f'(x_i)^2} \, \Delta x_i$$

and so

Surface Area =
$$\int_{a}^{b} 2\pi f(x) \sqrt{1 + f'(x)^2} dx$$

= $\int_{a}^{b} 2\pi y ds$
= $\int_{a}^{b} 2\pi (\text{radius of rotation}) ds$

Example. Rotate $y = \sqrt{x}$, x in [1,2], around the x-axis. Compute the resulting surface area.

We compute $f'(x) = \frac{1}{2\sqrt{x}}$.

Surface Area =
$$\int_{1}^{2} 2\pi f(x) \sqrt{1 + f'(x)^{2}} dx$$
=
$$\int_{1}^{2} 2\pi \sqrt{x} \sqrt{1 + \frac{1}{4x}} dx$$
=
$$\pi \int_{1}^{2} \sqrt{4x + 1} dx$$
=
$$\pi \cdot \frac{1}{4} \cdot \frac{2}{3} (4x + 1)^{3/2} \Big|_{x=1}^{x=2}$$
=
$$\frac{\pi}{6} \cdot (9^{3/2} - 5^{3/2}) = \frac{\pi}{6} \cdot (27 - 5\sqrt{5})$$

Surface area integrals are typically even harder than arc length ones.

Example. Rotate $y = x^2$, x in [0, 1], around the x-axis. Compute the resulting surface area.

We compute f'(x) = 2x.

Surface Area =
$$\int_0^1 2\pi f(x) \sqrt{1 + f'(x)^2} dx$$

= $\int_0^1 2\pi x^2 \sqrt{1 + 4x^2} dx$
= $4\pi \int_0^1 x^2 \sqrt{\frac{1}{4} + x^2} dx$

We use the formula

$$\int x^2 \sqrt{a^2 + x^2} \, dx$$

$$= \frac{x}{8} (a^2 + 2x^2) \sqrt{a^2 + x^2} - \frac{a^2}{8} \ln(x + \sqrt{a^2 + x^2}) + C$$

Surface Area

$$= 4\pi \int_0^1 x^2 \sqrt{\frac{1}{4} + x^2} dx$$

$$= 4\pi \left[\frac{x}{8} \left(\frac{1}{4} + 2x^2 \right) \sqrt{\frac{1}{4} + x^2} - \frac{1}{128} \ln \left(x + \sqrt{\frac{1}{4} + x^2} \right) \right] \Big|_{x=0}^{x=1}$$

$$= \frac{9\pi\sqrt{5}}{16} - \frac{\pi}{32} \ln(2 + \sqrt{5}) \approx 3.8097$$

Example. Rotate $y = \sqrt{x}$, x in [1,2], around the line y = -1. Set up the integral for the resulting surface area.

We compute $f'(x) = \frac{1}{2\sqrt{x}}$. Recall:

Surface Area =
$$\int_{a}^{b} 2\pi$$
 (radius of rotation) ds

so in this case

Surface Area =
$$\int_{1}^{2} 2\pi (\sqrt{x} + 1) \sqrt{1 + \frac{1}{4x}} dx$$

(It is possible to compute
$$\int \sqrt{1 + \frac{1}{4x}} \, dx$$
 by substitution $1 + \frac{1}{4x} = u^2$.)

Example. Rotate $y = e^x$, x in [0, 1], (a) around the y-axis, (b) around the line x = 2. Set up the integral for the resulting surface area.

We have two options. If we integrate over x, the radius of rotation is simply x. As $\frac{dy}{dx} = e^x$, we get for (a)

Surface Area
$$=\int_0^1 2\pi (\text{radius of rotation}) \, ds$$

 $=\int_0^1 2\pi x \sqrt{1+e^{2x}} \, dx$

and for (b)

Surface Area =
$$\int_0^1 2\pi (2-x)\sqrt{1+e^{2x}} dx$$

The second option is to integrate over y, in which case we write the curve as $x = \ln y$. We have $\frac{dx}{dy} = \frac{1}{y}$ and $ds^2 = dx^2 + dy^2$ gives

$$ds = \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy = \sqrt{1 + \frac{1}{y^2}} \, dy$$

(a) So, integrating over the range of y, which is from 1 to e,

Surface Area =
$$\int_{1}^{e} 2\pi (\text{radius of rotation}) \, ds$$

= $\int_{1}^{e} 2\pi \ln y \sqrt{1 + \frac{1}{y^2}} \, dy$

(b) The same approach now gives

Surface Area =
$$\int_{1}^{e} 2\pi (2 - \ln y) \sqrt{1 + \frac{1}{y^2}} \, dy$$

Imagine a seesaw along the x-axis with the pivot point ("fulcrum") at x = k. Children with masses m_1, m_2, \ldots, m_n sit at locations x_1, x_2, \ldots, x_n . The *moment* of such seesaw is the sum of all (mass)·(length of the lever) terms:

$$\sum_{i=1}^n m_i(x_i-k)$$

Multiplying also by g, the gravity acceleration, this gives the torque, or the rotational force, which measure the rotational tendency of the system: more precisely, it equals the derivative of the angular momentum.

In order for the system to be in the equilibrium, the torque must be 0, or equivalently

$$\sum_{i=1}^n m_i(x_i-k)=0,$$

or

$$k = \frac{\sum_{i=1}^n m_i x_i}{\sum_{i=1}^n m_i},$$

which we call the center of mass.

Assume that we have a thin plate shaped like a planar region R of constant density 1 (per unit area). Then the point $(\overline{x}, \overline{y})$ at which we can balance the plate is called the *centroid* of R.

Assume R extends between lines x = a and x = b. Assume also that the length of the intersection between the vertical line at x and the region is h(x).

We can compute the moment about the line x = k as follows

$$\int_a^b (x-k)h(x)\,dx.$$

In particular, the moment about the *y*-axis (x = 0) is

$$M_y = \int_a^b x h(x) dx.$$

Therefore, \overline{x} needs to satisfy

$$\int_{a}^{b} (x - \overline{x})h(x) dx = 0,$$

that is

$$\overline{x} = \frac{\int_a^b xh(x) dx}{\int_a^b h(x) dx} = \frac{M_y}{\text{Area}(R)}$$

Similarly, if the R extends between lines y = c and y = d and the length of the intersection between the horizontal line at y and the region is w(y), then we define the moment about the x-axis

$$M_X = \int_0^d yw(y) dy.$$

and we get

$$\overline{y} = \frac{\int_{c}^{d} yw(y) \, dy}{\int_{c}^{d} w(y) \, dy} = \frac{M_{x}}{\operatorname{Area}(R)}$$

$$\overline{x} = \frac{\int_a^b xh(x) dx}{\int_a^b h(x) dx} = \frac{M_y}{\text{Area}(R)}$$

$$\overline{y} = \frac{\int_c^d yw(y) dy}{\int_c^d w(y) dy} = \frac{M_x}{\text{Area}(R)}$$

By shell method,

$$2\pi M_X = \int_c^d 2\pi y w(y) dy$$
 = Volume of R rotated around x -axis.

Similarly,

$$2\pi M_y = \int_{2}^{b} 2\pi x h(x) dx$$
 = Volume of *R* rotated around *y*-axis.

So we get Pappus Theorem:

Volume of *R* rotated around *x*-axis = $2\pi \overline{y}$ Area(R)

Example. Let R be the region under the graph of $y = x^2$ on [0, 1]. Compute the centroid of R. Is it inside the region?

We have
$$h(x) = x^2$$
, so

$$\overline{x} = \frac{\int_0^1 x \cdot x^2 dx}{\int_0^1 x^2 dx} = \frac{1/4}{1/3} = \frac{3}{4}$$

For \overline{y} , we observe that $w(y) = 1 - \sqrt{y}$, so that

$$\overline{y} = \frac{\int_0^1 y(1 - \sqrt{y}) \, dy}{\operatorname{Area}(R)}$$

There is an easier option! The numerator is

$$\frac{1}{2\pi}$$
 (Volume of *R* rotated around *x*-axis) = $\frac{1}{2\pi} \cdot \pi \int_0^1 x^4 dx = \frac{1}{10}$

and so

$$\overline{y} = \frac{1/10}{1/3} = \frac{3}{10}.$$

To check whether $(\overline{x}, \overline{y})$ is inside R, we check whether $\overline{y} < \overline{x}^2$, which holds, so the answer is yes.

Now rotate the same region R around the line y = 2x - 3. What is the resulting volume?

By Pappus, the volume equals

$$2\pi \cdot (\text{distance between } (\overline{x}, \overline{y}) \text{ and the axis}) \cdot \text{Area}(R)$$

The formula for the distance between a line given by Ax + By + C = 0 and the point $(\overline{x}, \overline{y})$ is given by the formula

$$\frac{|A\overline{x} + B\overline{y} + C|}{\sqrt{A^2 + B^2}}$$

In our case, the line is 2x - y - 3 = 0 and so

Volume =
$$2\pi \cdot \frac{|2 \cdot \frac{3}{4} - \frac{3}{10} - 3|}{\sqrt{4+1}} \cdot \frac{1}{3} = \frac{6\pi}{5\sqrt{5}}$$

Example. Volume of torus; we obtain a torus by rotating a circle of radius r centered at (0, a), a > r, around the x-axis.

The centroid of the circle clearly is (a, 0). So by Pappus

Volume =
$$2\pi a \cdot \pi r^2 = 2\pi^2 a r^2$$