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6.3. Arc Length
We want to compute the length of the curve given by y = f (x)
for x in [a,b].

The length of the curve ∆s between x and x +∆x is
approximated by the length of the secant. So,

∆s2 ≈ ∆x2 +∆y2, ∆s ≈
√
∆x2 +∆y2 =

√
1 +

(
∆y
∆x

)2

∆x

Further,
∆y
∆x

=
f (x +∆x)− f (x)

∆x
≈ f ′(x)

so that
∆s ≈

√
1 + f ′(x)2 ∆x
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6.3. Arc Length
Now imagine that the curve is cut into small pieces between xi
and xi +∆xi of length ∆si .

Then the total arc length is approximated by
n∑

i=1

∆si ≈
n∑

i=1

√
1 + f ′(xi)2 ∆xi

and therefore equals

Arc Length =

∫ b

a

√
1 + f ′(x)2 dx .
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6.3. Arc Length

Arc Length =

∫ b

a

√
1 + f ′(x)2 dx =

∫ b

a

√
1 +

(
dy
dx

)2

dx .

If we write the arc length from a to x as

s(x) =
∫ x

a

√
1 + f ′(t)2 dt ,

then
ds
dx

=
√

1 + f ′(x)2 =

√
1 +

(
dy
dx

)2

which is sometimes suggestively written as

ds2 = dx2 + dy2,

the differential form of the Pythagorean theorem.
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6.3. Arc Length

Example. Compute the arc length of y = 2x3/2 between x = 0
and x = 1.
We have dy

dx = 3x1/2 and so

Arc Length =

∫ 1

0

√
1 +

(
dy
dx

)2

dx

=

∫ 1

0

√
1 + 9x dx

=
1
9

2
3
(1 + 9x)3/2

∣∣∣1
0
=

2
27

(103/2 − 1)
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6.3. Arc Length

Arc length integrals are commonly impossible or at least very
hard.
Example. Compute the arc length of the parabola y = x2

between x = 0 and x = 1. Now dy
dx = 2x , so

Arc Length =

∫ 1

0

√
1 + 4x2 dx = 2

∫ 1

0

√
1
4
+ x2 dx = (∗)

We can use the formula∫ √
a2 + x2 dx =

x
2

√
a2 + x2 +

a2

2
ln(x +

√
a2 + x2) + C

This can be obtained by a trigonometric substitution, similarly to
a discussion problem.
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6.3. Arc Length

This gives

(∗) = 2

[
x
2

√
1
4
+ x2 +

1
8
ln

(
x +

√
1
4
+ x2

)] ∣∣∣x=1

x=0

= 2

[
1
2

√
5
4
+

1
8
ln

(
1 +

√
5
4

)
− 1

8
ln

1
2

]

=

√
5

2
+

1
4
ln
(

2 +
√

5
)
≈ 1.4789

Check: this needs to be between
√

2 (the diagonal of the
square) and 2 (two sides of the square)!
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6.4. Area of surfaces of revolution
We rotate the graph of y = f (x) between x = a and x = b
around the x axis. We want to compute the area of the resulting
solid of revolution.
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6.4. Area of surfaces of revolution

What area do we get when we rotate a line segment between x
and x +∆x , of length ∆s, around the x-axis? This is the area
of a “frustrum” of a cone. If we cut and flatten the cone, we get
the area between two circular segments. Let ℓ be the radius of
the smaller circle so that ℓ+∆s is the radius of the larger one.
Also denote by θ the angle of the opening of the segments. The
smaller arc has length 2πf (x). The area of the frustrum then is

1
2
(ℓ+∆s)2θ − 1

2
ℓ2θ =

1
2
θ(ℓ2 + 2ℓ∆s +∆s2 − ℓ2)

≈ θℓ∆s
= 2πf (x)∆s
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6.4. Area of surfaces of revolution

So, the surface area is approximated by∑
i

2πf (xi)∆si ≈
∑

i

2πf (xi)
√

1 + f ′(xi)2 ∆xi

and so

Surface Area =

∫ b

a
2πf (x)

√
1 + f ′(x)2 dx

=

∫ b

a
2πy ds

=

∫ b

a
2π(radius of rotation)ds
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6.4. Area of surfaces of revolution

Example. Rotate y =
√

x , x in [1,2], around the x-axis.
Compute the resulting surface area.

We compute f ′(x) = 1
2
√

x .

Surface Area =

∫ 2

1
2πf (x)

√
1 + f ′(x)2 dx

=

∫ 2

1
2π

√
x

√
1 +

1
4x

dx

= π

∫ 2

1

√
4x + 1 dx

= π · 1
4
· 2

3
(4x + 1)3/2

∣∣∣x=2

x=1

=
π

6
· (93/2 − 53/2) =

π

6
· (27 − 5

√
5)
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6.4. Area of surfaces of revolution

Surface area integrals are typically even harder than arc length
ones.
Example. Rotate y = x2, x in [0,1], around the x-axis.
Compute the resulting surface area.

We compute f ′(x) = 2x .

Surface Area =

∫ 1

0
2πf (x)

√
1 + f ′(x)2 dx

=

∫ 1

0
2πx2

√
1 + 4x2 dx

= 4π
∫ 1

0
x2

√
1
4
+ x2 dx

12



6.4. Area of surfaces of revolution

We use the formula∫
x2
√

a2 + x2 dx

=
x
8
(a2 + 2x2)

√
a2 + x2 − a2

8
ln(x +

√
a2 + x2) + C

Surface Area

= 4π
∫ 1

0
x2

√
1
4
+ x2 dx

= 4π

[
x
8

(
1
4
+ 2x2

)√
1
4
+ x2 − 1

128
ln

(
x +

√
1
4
+ x2

)] ∣∣∣x=1

x=0

=
9π

√
5

16
− π

32
ln(2 +

√
5) ≈ 3.8097
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6.4. Area of surfaces of revolution
Example. Rotate y =

√
x , x in [1,2], around the line y = −1.

Set up the integral for the resulting surface area.

We compute f ′(x) = 1
2
√

x . Recall:

Surface Area =

∫ b

a
2π(radius of rotation)ds

so in this case

Surface Area =

∫ 2

1
2π(

√
x + 1)

√
1 +

1
4x

dx

(It is possible to compute
∫ √

1 + 1
4x dx by substitution

1 + 1
4x = u2.)
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6.4. Area of surfaces of revolution
Example. Rotate y = ex , x in [0,1], (a) around the y -axis, (b)
around the line x = 2. Set up the integral for the resulting
surface area.

We have two options. If we integrate over x , the radius of
rotation is simply x . As dy

dx = ex , we get for (a)

Surface Area =

∫ 1

0
2π(radius of rotation)ds

=

∫ 1

0
2πx

√
1 + e2x dx

and for (b)

Surface Area =

∫ 1

0
2π(2 − x)

√
1 + e2x dx
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6.4. Area of surfaces of revolution
The second option is to integrate over y , in which case we write
the curve as x = ln y . We have dx

dy = 1
y and ds2 = dx2 + dy2

gives

ds =

√
1 +

(
dx
dy

)2

dy =

√
1 +

1
y2 dy

(a) So, integrating over the range of y , which is from 1 to e,

Surface Area =

∫ e

1
2π(radius of rotation)ds

=

∫ e

1
2π ln y

√
1 +

1
y2 dy

(b) The same approach now gives

Surface Area =

∫ e

1
2π(2 − ln y)

√
1 +

1
y2 dy
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6.6. Centroids

Imagine a seesaw along the x-axis with the pivot point
(“fulcrum”) at x = k . Children with masses m1,m2, . . . ,mn sit at
locations x1, x2, . . . , xn. The moment of such seesaw is the sum
of all (mass)·(length of the lever) terms:

n∑
i=1

mi(xi − k)

Multiplying also by g, the gravity acceleration, this gives the
torque, or the rotational force, which measure the rotational
tendency of the system: more precisely, it equals the derivative
of the angular momentum.
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6.6. Centroids

In order for the system to be in the equilibrium, the torque must
be 0, or equivalently

n∑
i=1

mi(xi − k) = 0,

or

k =

∑n
i=1 mixi∑n
i=1 mi

,

which we call the center of mass.
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6.6. Centroids

Assume that we have a thin plate shaped like a planar region R
of constant density 1 (per unit area). Then the point (x , y) at
which we can balance the plate is called the centroid of R.
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6.6. Centroids

Assume R extends between lines x = a and x = b. Assume
also that the length of the intersection between the vertical line
at x and the region is h(x).
We can compute the moment about the line x = k as follows∫ b

a
(x − k)h(x)dx .

In particular, the moment about the y -axis (x = 0) is

My =

∫ b

a
xh(x)dx .
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6.6. Centroids
Therefore, x needs to satisfy∫ b

a
(x − x)h(x)dx = 0,

that is

x =

∫ b
a xh(x)dx∫ b
a h(x)dx

=
My

Area(R)

Similarly, if the R extends between lines y = c and y = d and
the length of the intersection between the horizontal line at y
and the region is w(y), then we define the the moment about
the x-axis

Mx =

∫ d

c
yw(y)dy .

and we get

y =

∫ d
c yw(y)dy∫ d
c w(y)dy

=
Mx

Area(R)
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6.6. Centroids

x =

∫ b
a xh(x)dx∫ b
a h(x)dx

=
My

Area(R)

y =

∫ d
c yw(y)dy∫ d
c w(y)dy

=
Mx

Area(R)

By shell method,

2πMx =

∫ d

c
2πyw(y)dy = Volume of R rotated around x-axis.

Similarly,

2πMy =

∫ b

a
2πxh(x)dx = Volume of R rotated around y -axis.

So we get Pappus Theorem:

Volume of R rotated around x-axis = 2πy Area(R)
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6.6. Centroids

Example. Let R be the region under the graph of y = x2 on
[0,1]. Compute the centroid of R. Is it inside the region?

We have h(x) = x2, so

x =

∫ 1
0 x · x2 dx∫ 1

0 x2 dx
=

1/4
1/3

=
3
4
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6.6. Centroids

For y , we observe that w(y) = 1 −√
y , so that

y =

∫ 1
0 y(1 −√

y)dy
Area(R)

There is an easier option! The numerator is

1
2π

·(Volume of R rotated around x-axis) =
1

2π
·π
∫ 1

0
x4 dx =

1
10

and so
y =

1/10
1/3

=
3
10

.

To check whether (x , y) is inside R, we check whether y < x2,
which holds, so the answer is yes.
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6.6. Centroids

Now rotate the same region R around the line y = 2x − 3.
What is the resulting volume?

By Pappus, the volume equals

2π · (distance between (x , y) and the axis) · Area(R)

The formula for the distance between a line given by
Ax + By + C = 0 and the point (x , y) is given by the formula

|Ax + By + C|√
A2 + B2

In our case, the line is 2x − y − 3 = 0 and so

Volume = 2π ·
|2 · 3

4 − 3
10 − 3|

√
4 + 1

· 1
3
=

6π
5
√

5
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6.6. Centroids

Example. Volume of torus; we obtain a torus by rotating a
circle of radius r centered at (0,a), a > r , around the x-axis.

The centroid of the circle clearly is (a,0). So by Pappus

Volume = 2πa · πr2 = 2π2ar2
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