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11.1–2. Parametric curves

Position of a particle is the plane is given by x = f (t), and
y = g(t). This means that the position (x , y) changes with
changing t (which is usually, but not always, thought of as time).
If t ∈ [a,b], then (f (a),g(a)) is the initial point and (f (b),g(b))
is the final (or terminal) point.
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11.1–2. Parametric curves
Example. Throw a stone horizontally, with velocity 2 (m/s),
from height 4 (m). Ignoring the air resistance, and assuming
g = 10 (m/s2), write the parametric equation for the stone’s
trajectory. Describe the curve on which the particle is moving by
writing the y -coordinate y as a function of the x-coordinate x .

Center the coordinate system so that the initial point is (0,4).
At time t , the position is then given by

x = 2t

y = 4 − g
2

t2 = 4 − 5t2

Assume the stone stops when it hits the ground. This happens
when y = 0, so t = 2/

√
5, and the final point is (4/

√
5,0).

If we solve x = 2t for x , we get t = x/2 and then

y = 4 − 5
4

x2,

a parabola.
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11.1–2. Parametric curves

Example. x = 3 cos t , y = 3 sin t , 0 ≤ t ≤ π. Describe the
motion of the particle.

The particle moves counterclockwise on the circle of radius 3
center at the origin, with initial point (3,0) and final point
(−3,0).

Example. x =
√

t , y = t + 1, 0 ≤ t ≤ π. Describe the curve on
which the particle is moving and the direction of motion.

Solve x =
√

t for t to get t = x2 and so y = x2 + 1. The particle
is moving on the parabola y = x2 + 1. As x increases with t ,
the particle moves rightwards.
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11.1–2. Parametric curves
We want to do calculus with parametric curves. We begin with
tangent lines.

Assume that the curve is given by x = f (t), y = g(t), where
both f and g are differentiable. Compute the tangent at a point
(f (t0),g(t0)).
The slope of the tangent is given by dy

dx , imagining that we can
write y as a function of x . By the chain rule

dy
dt

=
dy
dx

dx
dt

and so, provided dx
dt ̸= 0:

dy
dx

=
dy
dt
dx
dt

into which we can plug in t = t0.
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11.1–2. Parametric curves

This way, we can compute the second derivative

d2y
dx2 =

d(dy
dx )

dx
=

d
dt (

dy
dx )

dx
dt

The curve given by y = f (x) can be interpreted as a parametric
curve: x = t , y = f (t), in which particle moves on the curve so
that its x coordinate moves at unit speed.
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11.1–2. Parametric curves

Example. Consider the curve x = t3 + t2 + 1, y = t4 + t3,
t ≥ 0. Find the tangent at t = 1.

At t = 1, the point on the curve is (3,2).

Moreover
dy
dx

=
dy
dt
dx
dt

=
4t3 + 3t2

3t2 + 2t

and we plug in t = 1 to get the slope 7/5. The tangent line is:

y − 2 =
7
5
(x − 3)
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11.1–2. Parametric curves

Example. Consider the curve given parametrically by
x = t4 + 2, y = t3 + t , t ≥ 0. Analyze monotonicity and
concavity properties of this curve and describe the motion of
the particle. Roughly sketch this curve.

We have dx
dt = 4t3 ≥ 0, dy

dt = 3t2 + 1 ≥ 0. So, x and y are both
increasing in t , and

dy
dx

=
dy
dt
dx
dt

=
3t2 + 1

4t3 =
3
4

t−1 +
1
4

t−3 > 0

Further,
d2y
dx2 =

d
dt (

dy
dx )

dx
dt

=
−3

4 t−2 − 3
4 t−4

4t3 ,

which is always negative so that the curve is concave down.
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11.1–2. Parametric curves

A curve is given prametrically by x = f (t), and y = g(t).
How can we compute the area under this curve, between t = t0
and t = t1? Assuming that x increases with t , and y > 0 we
divide the region into thin strips between positions at t and
t +∆t . The strips have height y = g(t) and width
∆x = f (t +∆t)− f (t) ≈ f ′(t)∆t . The area of the strip is the
approximately g(t)f ′(t)∆t , which leads to the integral

Area =

∫ t1

t0
g(t)f ′(t)dt =

∫ t1

t0
y

dx
dt

dt =
∫ t1

t0
y dx

(If x decreases with t , replace dx
dt with −dx

dt .)
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11.1–2. Parametric curves

Example. Again, consider the curve given parametrically by
x = t4 + 2, y = t3 + t , t ≥ 0. Compute the area below the curve
between t = 0 and t = 1.

We know that x coordinate is increasing and y > 0 for t in [0,1]
so that the answer is∫ 1

0
(t3 + t) · 4t3 dt =

4
7
+

4
5
=

48
35

10



11.1–2. Parametric curves
A curve is given prametrically by x = f (t), and y = g(t).
How can we compute the arc length this curve, between t = t0
and t = t1? We divide the region into pieces between positions
at t and t +∆t . A small piece has length has length
approximated by ∆s, where

(∆s)2 = (∆x)2+(∆y)2 ≈ f ′(t)2∆t2+g′(t)2∆t2 = (f ′(t)2+g′(t)2)∆t2

and so ∆s ≈
√

f ′(t)2 + g′(t)2∆t ,

Arc Length =

∫ t1

t0

√
f ′(t)2 + g′(t)2 dt

=

∫ t1

t0

√(
dx
dt

)2

+

(
dy
dt

)2

dt =
∫ t1

t0

√
(dx)2 + (dy)2

=

∫ t1

t0
ds
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11.1–2. Parametric curves

Example. Again, the curve is x = t4 +2, y = t3 + t , t ≥ 0. Write
down the integral for the arc length between t = 0 and t = 1.

The answer is ∫ 1

0

√
(4t3)2 + (3t2 + 1)2 dt

12



11.1–2. Parametric curves: review example

Example. The motion of a particle is described by the
parametric curve x = t3 + 1, y = t2 − t + 1, t ≥ 0.
(a) Using first and second derivatives, analyze and roughly
sketch this curve. Describe the motion of the particle.
(b) Compute the area below the curve between the initial point
and the inflection point.
(c) Rotate the region below the curve around the x-axis and
compute the volume.
(d) Rotate the region below the curve around the y -axis and
compute the volume.
(e) Compute the arc length of this curve.
(f) Rotate the curve around the x-axis and compute the surface
area.
(g) Rotate the curve around the y -axis and compute the surface
area.
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11.1–2. Parametric curves: review example

(a) Using first and second derivatives, analyze and roughly
sketch this curve. Describe the motion of the particle.

We have dx
dt = 3t2 and dy

dt = 2t − 1, so that

dy
dx

=
dy
dt
dx
dt

=
2t − 1

3t2 =
2
3

t−1 − 1
3

t−2

which is positive when t > 1/2 and negative when t < 1/2. The
curve has a global minimum at t = 1/2, where
(x , y) = (9/8,3/4).

More precisely: dx
dt = 3t2 is always positive, the x coordinate

always increases, the particle is moving rightwards; and
dy
dt = 2t − 1 so that dy

dt < 0, y coordinate decreases and the
particle is moving downwards for t < 1/2, and upwards for
t > 1/2.
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11.1–2. Parametric curves: review example

Further,

d2y
dx2 =

d
dt (

dy
dx )

dx
dt

=
d
dt (

2
3 t−1 − 1

3 t−2)

3t2

=
−2

3 t−2 + 2
3 t−3

3t2

= −2
9

t−5(t − 1)

which is positive when t < 1 (so that the curve is concave
down) and negative when t > 1 (so that the curve is concave
up). The inflection point is when t = 1, at (x , y) = (2,1).
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11.1–2. Parametric curves: review example

(b) Compute the area below the curve between the initial point
and the inflection point.

Those are the points given by t = 0 and t = 1, so that the
answer is ∫ 1

0
y dx =

∫ 1

0
(t2 − t + 1) · 3t2 dt
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11.1–2. Parametric curves: review example

(c) Rotate the region below the curve around the x-axis and
compute the volume.

The volume is given by

Volume = π

∫ 1

0
y2 dx = π

∫ 1

0
(t2 − t + 1)23t2 dt

(d) Rotate the region below the curve around the y -axis and
compute the volume.

The volume is given by

Volume = 2π
∫ 1

0
xy dx = π

∫ 1

0
(t3 + 1)(t2 − t + 1)3t2 dt
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11.1–2. Parametric curves: review example

(e) Compute the arc length of this curve.

The arc length is given by

Arc Length =

∫ 1

0

√
(3t2)2 + (2t − 1)2 dt

(f) Rotate the curve around the x-axis and compute the surface
area.

The surface area is given by

Surface Area = 2π
∫ 1

0
y ds = 2π

∫ 1

0
(t2−t+1)

√
(3t2)2 + (2t − 1)2 dt
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11.1–2. Parametric curves: review example

(g) Rotate the curve around the y -axis and compute the surface
area.

The surface area is given by

Surface Area = 2π
∫ 1

0
x ds = 2π

∫ 1

0
(t3+1)

√
(3t2)2 + (2t − 1)2 dt
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11.1–2. Parametric curves
Optional fun problem.
From A. C. Doyle, The Adventure of the Priory School (1904):

We had come on a small black ribbon of pathway. In the middle
of it, clearly marked on the sodden soil, was the track of a
bicycle.
“Hurrah!”I cried. “We have it.”
But Holmes was shaking his head, and his face was puzzled
and expectant rather than joyous.
“A bicycle, certainly, but not the bicycle” said he.“I am familiar
with forty-two different impressions left by tires. This, as you
perceive, is a Dunlop, with a patch upon the outer cover.
Heidegger’s tires were Palmer’s, leaving longitudinal stripes.
Aveling, the mathematical master, was sure upon the point.
Therefore, it is not Heidegger’s track.”
“The boy’s, then?”
“Possibly, if we could prove a bicycle to have been in his
possession. But this we have utterly failed to do.
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11.1–2. Parametric curves

This track, as you perceive, was made by a rider who was
going from the direction of the school.”
“Or towards it?”
“No, no, my dear Watson. The more deeply sunk impression is,
of course, the hind wheel, upon which the weight rests. You
perceive several places where it has passed across and
obliterated the more shallow mark of the front one. It was
undoubtedly heading away from the school. It may or may not
be connected with our inquiry, but we will follow it backwards
before we go any farther.”
We did so, and at the end of a few hundred yards lost the tracks
as we emerged from the boggy portion of the moor. Following
the path backwards, we picked out another spot, where a
spring trickled across it. Here, once again, was the mark of the
bicycle, though nearly obliterated by the hoofs of cows. After
that there was no sign, but the path ran right on into Ragged
Shaw, the wood which backed on to the school.
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11.1–2. Parametric curves
From this wood the cycle must have emerged. Holmes sat
down on a boulder and rested his chin in his hands. I had
smoked two cigarettes before he moved. “Well, well,” said he, at
last. “It is, of course, possible that a cunning man might change
the tires of his bicycle in order to leave unfamiliar tracks. A
criminal who was capable of such a thought is a man whom I
should be proud to do business with. We will leave this
question undecided and hark back to our morass again, for we
have left a good deal unexplored.”
We continued our systematic survey of the edge of the sodden
portion of the moor, and soon our perseverance was gloriously
rewarded. Right across the lower part of the bog lay a miry
path. Holmes gave a cry of delight as he approached it. An
impression like a fine bundle of telegraph wires ran down the
centre of it. It was the Palmer tires.
“Here is Herr Heidegger, sure enough!” cried Holmes,
exultantly. “My reasoning seems to have been pretty sound,
Watson.”
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11.1–2. Parametric curves
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