Math 21B, Fall 2023.

Discussion Problems 7 (Thu., Nov. 9)

1. Let R be the region bounded by $y = \sin x$, for $0 \le x \le \pi$ and y = 0. Find the volume of the solid generated by revolving R around (a) the y-axis and (b) the x-axis.

2. Consider the region r bounded by the curves $y = x^2 + 2$, $y = \frac{1}{2}x + 1$, x = 0, and x = 1. Set up the integrals for the volume of the solid generated by revolving R around (a) the y-axis and (b) the x-axis, (c) the line x = -2, (d) the line y = -2, and (e) the line y = 4. Explain how you would compute these integrals.

3. Write down, but do not compute, the integral for the arc length of the curve given by $x = e^{y^2}$, $0 \le y \le 1$.

4. (a) Compute the length of the curve $y = e^x$ between x = 0 and x = 1. (Try substitution $1 + e^{2x} = t^2$.) (b) Compute the length of $y = \ln x$ between x = 1 and x = e. (Try to use (a).)

5. Compute the surface area of the surface generated by rotating the curve $y = \cos x$, $0 \le x \le \pi/2$, around the x-axis.