Discussion Problems 9 (Thu., Dec. 7)

- 1. A particle moves on a curve $x = t + \cos t$, $y = 2t \sin t$.
- (a) Find the particle's velocity (which is the derivative ds/dt of the arc length s) at time $t = \pi/2$.
- (b) Find the tangent to the curve at time t = 0.
- (c) Sketch the curve roughly using first derivatives.
- (d) Find the area under the curve for $0 \le t \le \pi/2$.
- (e) Rotate the region in (d) around the y-axis. Set up the integral for the volume of the resulting solid.
- (f) Set up the integral for the arc length of this curve for $0 \le t \le \pi/2$.
- (g) Rotate the curve for $0 \le t \le \pi/2$ around the x-axis. Set up the integral for the area of the resulting surface.
- 2. Consider the equation $r = 1 + 2\sin\theta$ in polar coordinates. Restrict yourself to θ for which $1 + 2\sin\theta > 0$.
- (a) Sketch the graph of the resulting curve.
- (b) Compute the point on this curve with maximal distance from the origin.
- (c) Compute the point on this curve with maximal distance from the y-axis.
- (d) Compute the area enclosed by the curve.
- (e) Compute the area of the intersection between the region enclosed by the curve and the interior of the circle r = 3/2.
- (f) Set up the integral for the arc length of this curve.