Math 21B, Winter 2022.
March. 14, 2022.

FINAL EXAM
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NAME(print in CAPITAL letters, first name first):

NAME(sign):

ID#:

Instructions: Each of the 8 problems has equal worth. Read each question carefully and answer it
in the space provided. You must show all your work for full credit. Clarity of your solutions may be
a factor when determining credit. Calculators, books or notes are not allowed. The proctor has been
directed not to answer any interpretation questions.

Make sure that you have a total of 10 pages (including this one) with 8 problems.
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1
sin Asin B = §(COS(A — B) —cos(A+ B)), sinAcosB = —(sin(4 — B) +sin(4 + B)),

distance between (x1,y1) and Az + By +C =0:
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1
cos Acos B = E(COS(A — B) +cos(A+ B)),

. 1
sin? A = %{1 —cos(24)), cos? A= 5(1 + cos(24)).
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(b) Is as larger or smaller than a? Explain fully.
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2. Compute the following indefinite integrals.
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3. Determine whether the two integrals below converge or diverge.
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4. Consider the functions

fiz) =/0w\/9+t+t3dt,
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5. Consider the curve r = 1 4 cos(260) in polar coordinates.

(a) Sketch the curve.
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(b) Compute the area this curve encloses.
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6. Consider the curve given parametrically by z = t> + 3t + 9t and y = t> + ¢, t > 0.

(a) Find the equation of the tangent to the curve at ¢ = 1. (You may leave the equation in the
point-slope form.)
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(b) Determine where this curve is concave up and where it is concave down. Sketch this curve,
indicating clearly any inflection points.
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Problem 6, continued.
(c) Let R be the region bounded by the curve, the coordinate axes, and the line x = 13. Set up, but
do not evaluate, the integral for the area of the region R. (Recall from (a) the point on the curve

when t =1.) [
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(d) Set up, but do not evaluate, the integral for the volume of the solid obtained by rotating the region

R (which is the same as in (¢)) around the y—axis. (
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(e) Rotate the the piece of the curve between ¢ = 2 and ¢ = 3 around the line y = 3. Set up, but do
not evaluate, the integral for the surface area of the resulting surface. (Explain why the line does not

intersect the piece of the curve.)
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7. The region R lies in the first quadrant and is bounded by the curves y = z? and y = z*. Compute
the quantities below.

(a) Coordinates of the centroid of R. Express your answer in simple fractions.
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(b) The volume of the solid obtained by rotating R around the line 2z — 3y — 2 = 0.
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8. Set up, but do not evaluate, the integrals for the arc length of the following curves. Also sketch
roughly each of the curves (no concavity analysis necessary).
(a) y =23 0 < x <1, in Cartesian coordinates.
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(b) r =tan@, 0 < # < /4, in polar coordinates.
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