

With

$$r = 1 - \cos \theta, \quad \frac{dr}{d\theta} = \sin \theta,$$

we have

$$\begin{aligned} r^2 + \left(\frac{dr}{d\theta}\right)^2 &= (1 - \cos \theta)^2 + (\sin \theta)^2 \\ &= 1 - 2 \cos \theta + \underbrace{\cos^2 \theta + \sin^2 \theta}_1 = 2 - 2 \cos \theta \end{aligned}$$

and

$$\begin{aligned} L &= \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_0^{2\pi} \sqrt{2 - 2 \cos \theta} d\theta \\ &= \int_0^{2\pi} \sqrt{4 \sin^2 \frac{\theta}{2}} d\theta \quad 1 - \cos \theta = 2 \sin^2(\theta/2) \\ &= \int_0^{2\pi} 2 \left| \sin \frac{\theta}{2} \right| d\theta \\ &= \int_0^{2\pi} 2 \sin \frac{\theta}{2} d\theta \quad \sin(\theta/2) \geq 0 \text{ for } 0 \leq \theta \leq 2\pi \\ &= \left[-4 \cos \frac{\theta}{2} \right]_0^{2\pi} = 4 + 4 = 8. \end{aligned}$$

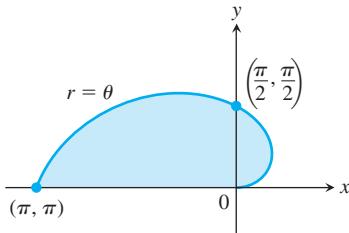
■

Exercises 11.5

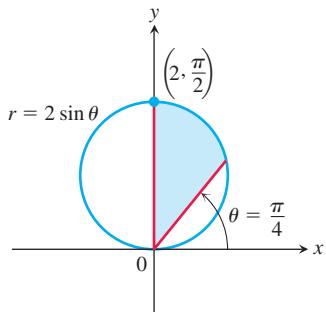
Finding Polar Areas

Find the areas of the regions in Exercises 1–8.

1. Bounded by the spiral $r = \theta$ for $0 \leq \theta \leq \pi$

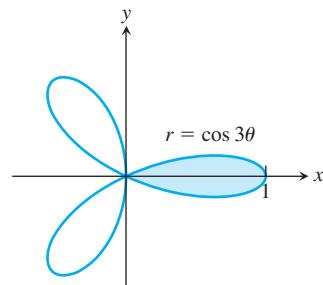


2. Bounded by the circle $r = 2 \sin \theta$ for $\pi/4 \leq \theta \leq \pi/2$



3. Inside the oval limaçon $r = 4 + 2 \cos \theta$

4. Inside the cardioid $r = a(1 + \cos \theta)$, $a > 0$
 5. Inside one leaf of the four-leaved rose $r = \cos 2\theta$
 6. Inside one leaf of the three-leaved rose $r = \cos 3\theta$



7. Inside one loop of the lemniscate $r^2 = 4 \sin 2\theta$
 8. Inside the six-leaved rose $r^2 = 2 \sin 3\theta$

Find the areas of the regions in Exercises 9–18.

9. Shared by the circles $r = 2 \cos \theta$ and $r = 2 \sin \theta$
 10. Shared by the circles $r = 1$ and $r = 2 \sin \theta$
 11. Shared by the circle $r = 2$ and the cardioid $r = 2(1 - \cos \theta)$
 12. Shared by the cardioids $r = 2(1 + \cos \theta)$ and $r = 2(1 - \cos \theta)$
 13. Inside the lemniscate $r^2 = 6 \cos 2\theta$ and outside the circle $r = \sqrt{3}$

14. Inside the circle $r = 3a \cos \theta$ and outside the cardioid $r = a(1 + \cos \theta)$, $a > 0$

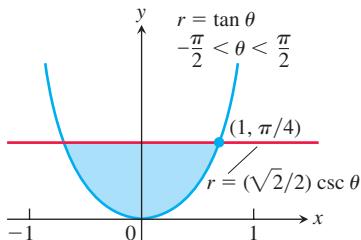
15. Inside the circle $r = -2 \cos \theta$ and outside the circle $r = 1$

16. Inside the circle $r = 6$ above the line $r = 3 \csc \theta$

17. Inside the circle $r = 4 \cos \theta$ and to the right of the vertical line $r = \sec \theta$

18. Inside the circle $r = 4 \sin \theta$ and below the horizontal line $r = 3 \csc \theta$

19. a. Find the area of the shaded region in the accompanying figure.



b. It looks as if the graph of $r = \tan \theta$, $-\pi/2 < \theta < \pi/2$, could be asymptotic to the lines $x = 1$ and $x = -1$. Is it? Give reasons for your answer.

20. The area of the region that lies inside the cardioid curve $r = \cos \theta + 1$ and outside the circle $r = \cos \theta$ is not

$$\frac{1}{2} \int_0^{2\pi} [(\cos \theta + 1)^2 - \cos^2 \theta] d\theta = \pi.$$

Why not? What is the area? Give reasons for your answers.

Finding Lengths of Polar Curves

Find the lengths of the curves in Exercises 21–28.

21. The spiral $r = \theta^2$, $0 \leq \theta \leq \sqrt{5}$

22. The spiral $r = e^\theta/\sqrt{2}$, $0 \leq \theta \leq \pi$

23. The cardioid $r = 1 + \cos \theta$

24. The curve $r = a \sin^2(\theta/2)$, $0 \leq \theta \leq \pi$, $a > 0$

25. The parabolic segment $r = 6/(1 + \cos \theta)$, $0 \leq \theta \leq \pi/2$

26. The parabolic segment $r = 2/(1 - \cos \theta)$, $\pi/2 \leq \theta \leq \pi$

27. The curve $r = \cos^3(\theta/3)$, $0 \leq \theta \leq \pi/4$

28. The curve $r = \sqrt{1 + \sin 2\theta}$, $0 \leq \theta \leq \pi\sqrt{2}$

29. **The length of the curve $r = f(\theta)$, $\alpha \leq \theta \leq \beta$** Assuming that the necessary derivatives are continuous, show how the substitutions

$$x = f(\theta) \cos \theta, \quad y = f(\theta) \sin \theta$$

(Equations 2 in the text) transform

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta$$

into

$$L = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta.$$

30. **Circumferences of circles** As usual, when faced with a new formula, it is a good idea to try it on familiar objects to be sure it gives results consistent with past experience. Use the length formula in Equation (3) to calculate the circumferences of the following circles ($a > 0$).

a. $r = a$ b. $r = a \cos \theta$ c. $r = a \sin \theta$

Theory and Examples

31. **Average value** If f is continuous, the average value of the polar coordinate r over the curve $r = f(\theta)$, $\alpha \leq \theta \leq \beta$, with respect to θ is given by the formula

$$r_{av} = \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f(\theta) d\theta.$$

Use this formula to find the average value of r with respect to θ over the following curves ($a > 0$).

a. The cardioid $r = a(1 - \cos \theta)$

b. The circle $r = a$

c. The circle $r = a \cos \theta$, $-\pi/2 \leq \theta \leq \pi/2$

32. **$r = f(\theta)$ vs. $r = 2f(\theta)$** Can anything be said about the relative lengths of the curves $r = f(\theta)$, $\alpha \leq \theta \leq \beta$, and $r = 2f(\theta)$, $\alpha \leq \theta \leq \beta$? Give reasons for your answer.

11.6 Conic Sections

In this section we define and review parabolas, ellipses, and hyperbolas geometrically and derive their standard Cartesian equations. These curves are called *conic sections* or *conics* because they are formed by cutting a double cone with a plane (Figure 11.37). This geometry method was the only way they could be described by Greek mathematicians who did not have our tools of Cartesian or polar coordinates. In the next section we express the conics in polar coordinates.

Parabolas

DEFINITIONS A set that consists of all the points in a plane equidistant from a given fixed point and a given fixed line in the plane is a **parabola**. The fixed point is the **focus** of the parabola. The fixed line is the **directrix**.