Math 21B, Winter 2022.
Feb. 4, 2022.

MIDTERM EXAM 1
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NAME(print in CAPITAL letters, first name first):
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Instructions: Each of the 4 problems has equal worth. Read each question carefully and answer it
in the space provided. You must show all your work for full credit. Clarity of your solutions may be a
factor when determining credit. Calculators, books or notes are not allowed. The proctors have been
directed not to answer any interpretation questions.

Make sure that you have a total of 5 pages (including this one) with 4 problems.
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1. Throughout this problem, consider the integral / s dx.
2

(a) Partition the interval [2,4] into 4 subintervals of equal length, and let the evaluation points cp be
the right endpoints. Write down (but do not evaluate) the resulting approximating (Riemann) sum

to the integral. I
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(b) Use the trapezoidal rule with 4 subintervals to write down an approximating expression for the
above integral. (Do not evaluate this expression.)
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(¢) For each approximation (in (a) and in (b)), determine whether it overestimates or underestimates
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(d) Assume that now you use midpoints as evaluation points in (a), but keep evervthing else the same.
Does the approximation now overestimate or underestimate the integral?
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2. Throughout this problem, consider F(z) = / dt, and restrict x to x > 1.
1

(a) Determine the intervals on which y = F' ((w_)ﬂi:gcreasing and those on which it is decreasing.
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(b) Determine the intervals on which y = F' (a:ljygc’)ncave up and those on which it is concave down.
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3. Compute the following two antiderivatives.

2(lnz)3
o B
us,@/\x
A x= ?L—o\x
3

165
() f NorrTha

2X3+S— = &k xzr—u-—r

/
N
xFdX = Qo‘luk
l W—5 o
“R) =T e
2
= ,l;lj {%m/z- 10 o
Bl
- L (2x+5)

=3£"+c,

2.

_ Cwaﬁq_‘t_ A,
2

e



4. Compute the following two areas.
(a) Area under the graph of y = v/1+ 3sinz - cosz on the interval [0,7/2]. Explain first why the
function is defined and never negative on this interval. Give the result as a simple fraction.
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(b) Area of the bounded region enclosed by the graphs of y = z3 + 3z% and of y = 23 + 22 + 4z. Give
the result as a simple fraction.
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