Math 21B, Fall 2023.
Oct. 25, 2023.

MIDTERM EXAM 1
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NAME(print in CAPITAL letters, first name first): ________

NAME(sign): ' ML

ID#:

Instructions: Each of the 4 problems has equal worth. Read each question carefully and answer it
in the space provided. You must show all your work for full credit. Clarity of your solutions may be a
factor when determining credit. Electronic devices, books or notes are not allowed. The proctors have
been directed not to answer any interpretation questions: proper interpretation of exam questions is
a part of the exam.

Make sure that you have a total of 5 pages (including this one} with 4 problems.

IO DD =

TOTAL



X | en

fD i
p——f—— Y b
o e h My 4 ""17:]‘““"2_ /e
e
1 e’-‘/z_

1. Throughout this problem, consider the integral f e =2 gy,

0
(a) Partition the interval [0, 1] into 4 subintervals of equal length, and let the evaluation points ¢ be
the left endpoints. Write down (but do not evaluate) the resulting approximating (Riemann) sum to

the integral.
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{b) Use the trapezoidal rule with 4 subintervals to write down an approximating expression for the
above integral. (Do not evaluate this expression.)
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{c) For each approximation (in (a) and (b)), determine whether it overestimates or underestimates
the integral. 1
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,(d) Assume that now you use midpoints as evaluation points in (a}, but keep everything else the saine.
[ Does the approximation now overestimate or underestimate the integral?
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2. Throughout this problem, consider F(z) = / l-l-_ﬁ"dt' and restrict 2 to & > 0.
0

{a) Determine the intervals on which y = F(x) increasing and those on which it is decreasing.
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(b) Determine the intervals on which ¥ = F{z) is concave up and those on which it is concave down.
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3. Compute the following two antiderivatives.

(a)/e::_:;da: = S % = L, u+ C = Qw(ay\+§)‘{~c
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4. Compute the following two areas.
{a) Area under the graph of y = (cos(dx))? - sin(4x) on the interval [0,7/4]. Explain first why the
function is never negative on this interval. Give the result as a simple fraction.
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(b) Area of the bounded region enclosed by the graphs of y = 2® and of y = x® + 2% ~ 2. Give the
result as a simple fraction.
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