## MIDTERM EXAM 2

| NAME(print in CAPITAL letters, first name first): |  |
|---------------------------------------------------|--|
| NAME(sign):                                       |  |
| ID#:                                              |  |

Instructions: Each of the 4 problems has equal worth. Read each question carefully and answer it in the space provided. You must show all your work for full credit. Clarity of your solutions may be a factor when determining credit. Calculators, books or notes are not allowed. The proctors have been directed not to answer any interpretation questions.

Make sure that you have a total of 5 pages (including this one) with 4 problems.

| 1     |  |
|-------|--|
| 2     |  |
| 3     |  |
| 4     |  |
| TOTAL |  |

$$\sin A \sin B = \frac{1}{2}(\cos(A - B) - \cos(A + B))$$

$$\sin A \cos B = \frac{1}{2}(\sin(A - B) + \sin(A + B))$$

$$\cos A \cos B = \frac{1}{2}(\cos(A - B) + \cos(A + B))$$

$$\sin^2 A = \frac{1}{2}(1 - \cos(2A)), \quad \cos^2 A = \frac{1}{2}(1 + \cos(2A))$$

1. Compute the following two indefinite integrals. (a)  $\int \frac{1}{\sqrt{x+1}+1} dx$ 

(a) 
$$\int \frac{1}{\sqrt{x+1}+1} \, dx$$

(b)  $\int \frac{1}{x^2 + 2x + 2} \, dx$ 

2. Compute the following two definite integrals. (a) 
$$\int_0^{\pi/4} \cos(3x) \cos x \, dx$$

(b)  $\int_{1}^{2} \frac{2}{x^3 + 3x^2 + 2x} \, dx$ 

| 3. The region R lies between $x = 0$ and $x = \pi/2$ and is bound | nded by the graphs of $y = \cos x$ and $y = 0$ . |
|-------------------------------------------------------------------|--------------------------------------------------|
|-------------------------------------------------------------------|--------------------------------------------------|

(a) Rotate R around the x-axis and compute the volume of the resulting solid.

(b) Rotate the region around the y-axis and compute the volume of the resulting solid.

| 4. | Consider the curve given as the graph of the function $y = \ln(x+1)$ , for $0 \le x \le 1$ . | Write down, |
|----|----------------------------------------------------------------------------------------------|-------------|
| bi | ut do not compute the integrals for quantities specified below.                              |             |
| ,  |                                                                                              |             |

(a) The arc length of this curve.

(b) The surface area of the surface obtained by revolution of this curve around the x axis.

(c) The surface area of the surface obtained by revolution of this curve around the line y=1. (Explain why this line does not intersect the curve!)