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Martingales

Let (Ω,F ,P) be a probability space. Let

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F

be an increasing sequence of σ-algebras, a filtration, with
F∞ = σ(∪∞

n=1Fn).
Fn is “the information available at time n.”

Let Xn be a sequence of random variables. We say that Xn is
adapted to Fn if Xn is Fn-measurable.
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Martingales

Definition
Assume that Xn, n = 0,1,2, . . ., is a sequence of r.v.’s and Fn is
a filtration. Then Xn is a martingale (w.r.t. Fn) if for all n ≥ 0,

(i) E |Xn| < ∞;
(ii) Xn is adapted to Fn; and
(iii) E [Xn+1 | Fn] = Xn a.s.

A supermatingale has ≤ in (iii) and a submatingale has ≥ in
(iii).
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Martingales: observations

(1) Observe that EXn+1 ≥ EXn for a submartingale.

(2) The filtration
Fnat

n = σ{X0, . . . ,Xn}

is the natural filtration. Note that Fnat
n ⊂ Fn, and for a

submartingale,

E [Xn+1|Fnat
n ] = E [E [Xn+1 | Fn] | Fnat

n ] ≥ E [Xn | Fnat
n ] = Xn

so we keep (iii) if we replace the original filtration by Fnat
n . This

is the minimal filtration for (i)–(iii). When unstated, we will
assume that this is the filtration used.
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Martingales: examples

Example. Sum of mean-zero independent r.v.’s: if ξ1, ξ2, . . . are
independent and Eξi = 0, then the sequence Sn given by
S0 = 0, Sn = ξ1 + · · ·+ ξn for n ≥ 1, is a martingale. (When
Eξi ≥ 0 it is a submartingale and when Eξi ≤ 0 it is a
supermartingale.)
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Martingales: examples

Example. Product of mean-one independent r.v.’s: if ξ1, ξ2, . . .
are independent and Eξi = 1, then the sequence Rn given by
R0 = 1, Rn = ξ1 · · · ξn for n ≥ 1, is a martingale. (If ξi ≥ 0, then
when Eξi ≥ 1 it is a submartingale and when Eξi ≤ 1 it is a
supermartingale.)
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Martingales: examples

Example. Levy or Doob martingale: if E |X | < ∞ and Fn is any
filtration, then Xn = E [X | Fn] is a martingale.

This follows from the tower property.
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Martingales: examples

Example. Galton-Watson (or branching) process: Start with
one subject in generation 0. Every subject in every generation
produces an independent number of offspring in the next
generation. This number has offspring distribution given by
pk = P(no. of children = k), k = 0,1,2, . . .

Let µ =
∑∞

k=0 kpk .
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Martingales: examples
Rigorous setting: let the potential numbers of offspring

ξ1
1 , ξ

1
2 , ξ

1
3 , . . .

ξ2
1 , ξ

2
2 , ξ

2
3 , . . .

. . .

be i.i.d. with offspring distribution. Note that Eξm
i = µ.

Let Fn = σ{ξm
i : 1 ≤ m ≤ n} (with F0 trivial). Let Z0 = 1 and

Zn+1 =

{
0 if Zn = 0
ξn+1

1 + · · ·+ ξn+1
Zn

if Zn ≥ 1
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Martingales: examples

Proposition

Assume µ < ∞. Then Zn/µ
n is a martingale.

Proof.
Observe that Zn is Fn-measurable. Further,

E [Zn+1 | Fn] =
∞∑

k=1

E [Zn+11{Zn=k} | Fn]

=
∞∑

k=1

E [(ξn+1
1 + . . .+ ξn+1

k )1{Zn=k} | Fn]

=
∞∑

k=1

1{Zn=k}kµ = µZn

So, EZn = µn < ∞, and E [Zn+1/µ
n+1 | Fn] = Zn/µ

n.
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Martingales: observations

(3) If Xn is a submartingale, then E [Xn | Fm] ≥ Xm for all m ≤ n.
(with ≤ for supermartingales, = for martingales).

Proof.
We have
E [Xm+2 | Fm] = E [E [Xm+2 | Fm+1] | Fm] ≥ E [Xm+1 | Fm] ≥ Xm,
etc.

11



Martingales: observations

(4) If Xn is a martingale, and φ : R → R is convex with
E |φ(Xn)| < ∞ for all n, then φ(Xn) is a submartingale.

Proof.
By conditional Jensen, we have
E [φ(Xn+1) | Fn] ≥ φ(E [Xn+1 | Fn]) = φ(Xn).

If φ is concave and Xn is a martingale, then φ(Xn) is a
supermartingale.

If φ is convex and nondecreasing and Xn is a submartingale,
then φ(Xn) is a submartingale. (The supermartingale version:
concave and nondecrasing.)
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Martingales: observations

Important special cases:

If Xn is a martingale and EX 2
n < ∞, then X 2

n is a submartingale.

If Xn is a submartingale then X+
n is a submartingale.

If Xn is a supermartingale then
Xn ∧ a = min{Xn,a} = a − (a − Xn)+ is a supermartingale.
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Martingale transform

Let Fn, n ≥ 0 be a filtration. A sequence Hn, n ≥ 1 of r.v.’s is
predictable if Hn is Fn−1-measurable, for all n ≥ 1. (There is no
H0.)
The basic interpretation is the amount of money a gambler bets
at the nth game.

Definition (Martingale transform)
Let

(H • X )0 = 0

(H • X )n =
n∑

m=1

Hm(Xm − Xm−1)
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Martingale transform

Theorem
Assume Xn is a supermartingale. If Hn ≥ 0 and each Hn is
bounded (i.e., Hn ≤ cn ∈ R, for all n), then (H • X )n is a
supermartingale. Same for submartingales. Same also for
martingales, except that we do not need Hn ≥ 0 in this case.

Proof.
Boundedness is needed for E |(H • X )n| < ∞. Moreover, for
supermartingales,

E [(H•X )n+1 | Fn] = (H•X )n+Hn+1E [(Xn+1−Xn) | Fn] ≤ (H•X )n.

15



Martingale transform

Example. The martingale. Assume that Xn = ξ1 + · · ·+ ξn,
where ξi are i.i.d. with P(ξi = 1) = p ≤ 1/2 and
P(ξi = −1) = 1 − p.
Then Xn is a supermartingale and Xm − Xm−1 = ξm. Let Hn be
the amount of money the gambler bets (on ξn = 1) at time n, so
that (H • X )n are the total winnings through time n.
Using “double when you lose” strategy, define

H1 = 1

Hn =

{
2Hn−1 if ξn−1 = −1
1 otherwise

Let N be the time of the first win (when ξn = 1 for the first time).
Then (H • X )N = 1. But (H • X )n is 0 at n = 0 and is a
supermartingale. Contradiction?
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Martingale transform

No! The time N is random!
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Stopping time

Definition
A random variable N ∈ {0,1,2, . . . ,∞} is a stopping time
w.r.t. filtration Fn if {N = n} ∈ Fn for every n = 0,1,2, . . ..

Note that N = ∞ is a possible value. Also note that we could
equivalently require that {N ≤ n} ∈ Fn for every finite n.

In the gambling context, the gambler’s decision when to stop
may be random, but must be based on the information available
at time n.
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Stopping time

Example. Pick a p ∈ (0,1). Let ξi be i.i.d., P(ξi = 1) = p,
P(ξi = −1) = 1 − p, and Sn =

∑n
i=1 ξi , a one-dimensional

simple random walk . Take Fn = σ{ξ1, . . . , ξn} (with
F0 = {0,Ω}).

Then T = inf{k : Sk ≥ 10} is a stopping time, as

{T ≤ n} = ∪0≤k≤n{Sk ≥ 10}.

Note that it is possible that T = ∞, which happens with positive
probability when p < 1/2 (as we will see).

On the other hand, T ′ = sup{k ≤ 20 : Sk ≥ 0} is not a stopping
time; for example

{T ′ = 0} = ∩20
k=1{Sk < 0} /∈ F0.
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Stopping time

The main example of a stopping time is a hitting time. For
A ∈ B(R), and Xn a process adapted to filtration Fn, we define
the hitting time

τA = inf{n ≥ 0 : Xn ∈ A}.

As
{τA ≤ n} = ∪k≤n{Xk ∈ A},

this is a stopping time.

Proposition

If S, T are stopping times, then so are S ∧ T = min{S,T} and
S ∨ T = max{S,T}.

Proof for HW.
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Stopping time

Assume that Xn is adapted to a filtration Fn, and N is a
stopping time for the same filtration.
Let Hn = 1{N≥n} = 1{N≤n−1}c . This is a nonnegative predictable
process, and

(H•X )n =
n∑

k=1

1{N≥k}(Xk−Xk−1) =
N∧n∑
k=1

(Xk−Xk−1) = XN∧n−X0.

The process XN∧n is called the stopped process, and is clearly
also adapted.
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Stopping time

Corollary
If Xn is a supermartingale and N is a stopping time (with same
filtration), then the stopped process is also a supermartingale.
Therefore, EXN∧n ≤ EX0. (Same for a submartingale and a
martingale.)

Proof.
This follows from the martingale transform theorem.
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Stopping time

Assume that Xn is a supermartingale and τ is a finite stopping
time, i.e., P(τ < ∞) = 1. Assume that either: (a) τ is bounded,
i.e., P(τ ≤ a) = 1 for some integer a; or (b) the stopped
process is uniformly bounded, i.e., supn |Xτ∧n| ≤ c for some
c ∈ R. Then EXτ = EX0.

This is a special case of the optional stopping theorem, which
we will prove is some generality later. Note that (a) and (b) both
fail for the martingale.

Proof.
We know that E(Xn∧τ ) ≤ EX0, and we may send n → ∞, using
DCT in the case (b).
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Stopping time

Example. Let Sn be a simple symmetric one-dimensional
random walk, that is, p = 1/2. (In particular, S0 = 0.) Fix
a,b ≥ 0 and let T = inf{n : Sn = −a or Sn = b}. Then Sn and
S2

n − n are martingales with Fn = σ{ξ1, . . . , ξn}. To check,

E [S2
n+1 − (n + 1) | Fn]

= E [S2
n + 2Snξn+1 + ξ2

n+1 − n − 1 | Fn] = S2
n − n.

Then P(T < ∞) = 1 as P(T > n) ≤ (1 − 2−a−b)⌊n/(a+b)⌋ and
|Sn∧T | ≤ max{a,b}.
So, EST = 0, that is, 0 = −aP(ST = −a) + bP(ST = b), which
implies that

P(ST = −a) =
b

a + b
,P(ST = b) =

a
a + b
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Stopping time

We also know that for all n,

E(S2
T∧n) = E(T ∧ n).

Send n → ∞, using DCT on LHS and MCT on RHS, to get

ET = ES2
T = a2P(ST = −a) + b2P(ST = b) = ab.

Let S is the hitting time of 1, assume b = 1, and call previous
time Ta. Then

P(S = ∞) = P(∩∞
a=1{STa = −a}) = lim

a→∞
P(STa = −a) = 0,

and Ta ↑ S as a → ∞, so ES = limETa = ∞. More on this later.
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