Martingales: definition and basic properties

Janko Gravner

MAT/STA 235B

January 23, 2024

1

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space. Let

$$\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}$$

be an increasing sequence of σ -algebras, a *filtration*, with $\mathcal{F}_{\infty} = \sigma(\bigcup_{n=1}^{\infty} \mathcal{F}_n)$. \mathcal{F}_n is "the information available at time *n*."

Let X_n be a sequence of random variables. We say that X_n is *adapted to* \mathcal{F}_n if X_n is \mathcal{F}_n -measurable.

Definition

Assume that X_n , n = 0, 1, 2, ..., is a sequence of r.v.'s and \mathcal{F}_n is a filtration. Then X_n is a *martingale* (w.r.t. \mathcal{F}_n) if for all $n \ge 0$,

- (i) $E|X_n| < \infty;$
- (ii) X_n is adapted to \mathcal{F}_n ; and
- (iii) $E[X_{n+1} | \mathcal{F}_n] = X_n$ a.s.

A supermatingale has \leq in (iii) and a submatingale has \geq in (iii).

(1) Observe that $EX_{n+1} \ge EX_n$ for a submartingale.

(2) The filtration

$$\mathcal{F}_n^{\mathrm{nat}} = \sigma\{X_0, \ldots, X_n\}$$

is the *natural* filtration. Note that $\mathcal{F}_n^{nat} \subset \mathcal{F}_n$, and for a submartingale,

$$E[X_{n+1}|\mathcal{F}_n^{\text{nat}}] = E[E[X_{n+1} | \mathcal{F}_n] | \mathcal{F}_n^{\text{nat}}] \ge E[X_n | \mathcal{F}_n^{\text{nat}}] = X_n$$

so we keep (iii) if we replace the original filtration by $\mathcal{F}_n^{\text{nat}}$. This is the minimal filtration for (i)–(iii). When unstated, we will assume that this is the filtration used.

Example. Sum of mean-zero independent r.v.'s: if $\xi_1, \xi_2, ...$ are independent and $E\xi_i = 0$, then the sequence S_n given by $S_0 = 0$, $S_n = \xi_1 + \cdots + \xi_n$ for $n \ge 1$, is a martingale. (When $E\xi_i \ge 0$ it is a submartingale and when $E\xi_i \le 0$ it is a supermartingale.)

Example. Product of mean-one independent r.v.'s: if $\xi_1, \xi_2, ...$ are independent and $E\xi_i = 1$, then the sequence R_n given by $R_0 = 1, R_n = \xi_1 \cdots \xi_n$ for $n \ge 1$, is a martingale. (If $\xi_i \ge 0$, then when $E\xi_i \ge 1$ it is a submartingale and when $E\xi_i \le 1$ it is a supermartingale.)

Example. Levy or Doob martingale: if $E|X| < \infty$ and \mathcal{F}_n is any filtration, then $X_n = E[X | \mathcal{F}_n]$ is a martingale.

This follows from the tower property.

Example. Galton-Watson (or branching) process: Start with one subject in generation 0. Every subject in every generation produces an independent number of offspring in the next generation. This number has *offspring distribution* given by $p_k = P(\text{no. of children} = k), k = 0, 1, 2, ...$

Let
$$\mu = \sum_{k=0}^{\infty} k p_k$$
.

Rigorous setting: let the potential numbers of offspring

 $\xi_1^1, \xi_2^1, \xi_3^1, \dots$ $\xi_1^2, \xi_2^2, \xi_3^2, \dots$

be i.i.d. with offspring distribution. Note that $E\xi_i^m = \mu$.

Let $\mathcal{F}_n = \sigma\{\xi_i^m : 1 \le m \le n\}$ (with \mathcal{F}_0 trivial). Let $Z_0 = 1$ and $Z_{n+1} = \begin{cases} 0 & \text{if } Z_n = 0\\ \xi_1^{n+1} + \dots + \xi_{Z_n}^{n+1} & \text{if } Z_n \ge 1 \end{cases}$

. . .

Proposition

Assume $\mu < \infty$. Then Z_n/μ^n is a martingale.

Proof.

Observe that Z_n is \mathcal{F}_n -measurable. Further,

$$E[Z_{n+1} | \mathcal{F}_n] = \sum_{k=1}^{\infty} E[Z_{n+1} \mathbf{1}_{\{Z_n = k\}} | \mathcal{F}_n]$$

= $\sum_{k=1}^{\infty} E[(\xi_1^{n+1} + \ldots + \xi_k^{n+1}) \mathbf{1}_{\{Z_n = k\}} | \mathcal{F}_n]$
= $\sum_{k=1}^{\infty} \mathbf{1}_{\{Z_n = k\}} k\mu = \mu Z_n$

So, $EZ_n = \mu^n < \infty$, and $E[Z_{n+1}/\mu^{n+1} | \mathcal{F}_n] = Z_n/\mu^n$.

(3) If X_n is a submartingale, then $E[X_n | \mathcal{F}_m] \ge X_m$ for all $m \le n$. (with \le for supermartingales, = for martingales).

Proof. We have $E[X_{m+2} | \mathcal{F}_m] = E[E[X_{m+2} | \mathcal{F}_{m+1}] | \mathcal{F}_m] \ge E[X_{m+1} | \mathcal{F}_m] \ge X_m,$ etc.

(4) If X_n is a martingale, and $\varphi : \mathbb{R} \to \mathbb{R}$ is convex with $E|\varphi(X_n)| < \infty$ for all *n*, then $\varphi(X_n)$ is a submartingale.

Proof.

By conditional Jensen, we have $E[\varphi(X_{n+1} | \mathcal{F}_n] \ge \varphi(E[X_{n+1} | \mathcal{F}_n]) = \varphi(X_n).$

If φ is concave and X_n is a martingale, then $\varphi(X_n)$ is a supermartingale.

If φ is convex and nondecreasing and X_n is a submartingale, then $\varphi(X_n)$ is a submartingale. (The supermartingale version: concave and nondecrasing.) Important special cases:

If X_n is a martingale and $EX_n^2 < \infty$, then X_n^2 is a submartingale.

If X_n is a submartingale then X_n^+ is a submartingale.

If X_n is a supermartingale then $X_n \wedge a = \min\{X_n, a\} = a - (a - X_n)_+$ is a supermartingale. Let \mathcal{F}_n , $n \ge 0$ be a filtration. A sequence H_n , $n \ge 1$ of r.v.'s is *predictable* if H_n is \mathcal{F}_{n-1} -measurable, for all $n \ge 1$. (There is no H_0 .)

The basic interpretation is the amount of money a gambler bets at the *n*th game.

Definition (Martingale transform)

Let

$$(H \bullet X)_0 = 0$$

 $(H \bullet X)_n = \sum_{m=1}^n H_m(X_m - X_{m-1})$

Theorem

Assume X_n is a supermartingale. If $H_n \ge 0$ and each H_n is bounded (i.e., $H_n \le c_n \in \mathbb{R}$, for all n), then $(H \bullet X)_n$ is a supermartingale. Same for submartingales. Same also for martingales, except that we do not need $H_n \ge 0$ in this case.

Proof.

Boundedness is needed for $E|(H \bullet X)_n| < \infty$. Moreover, for supermartingales,

$$E[(H\bullet X)_{n+1} \mid \mathcal{F}_n] = (H\bullet X)_n + H_{n+1}E[(X_{n+1}-X_n) \mid \mathcal{F}_n] \le (H\bullet X)_n.$$

Martingale transform

Example. *The* martingale. Assume that $X_n = \xi_1 + \dots + \xi_n$, where ξ_i are i.i.d. with $P(\xi_i = 1) = p \le 1/2$ and $P(\xi_i = -1) = 1 - p$. Then X_n is a supermartingale and $X_m - X_{m-1} = \xi_m$. Let H_n be the amount of money the gambler bets (on $\xi_n = 1$) at time *n*, so that $(H \bullet X)_n$ are the total winnings through time *n*. Using "double when you lose" strategy, define

$$egin{aligned} &\mathcal{H}_1 = 1 \ &\mathcal{H}_n = egin{cases} 2\mathcal{H}_{n-1} & ext{if } \xi_{n-1} = -1 \ 1 & ext{otherwise} \end{aligned}$$

Let *N* be the time of the first win (when $\xi_n = 1$ for the first time). Then $(H \bullet X)_N = 1$. But $(H \bullet X)_n$ is 0 at n = 0 and is a supermartingale. Contradiction? No! The time N is random!

Definition

A random variable $N \in \{0, 1, 2, ..., \infty\}$ is a *stopping time* w.r.t. filtration \mathcal{F}_n if $\{N = n\} \in \mathcal{F}_n$ for every n = 0, 1, 2, ...

Note that $N = \infty$ is a possible value. Also note that we could equivalently require that $\{N \le n\} \in \mathcal{F}_n$ for every finite *n*.

In the gambling context, the gambler's decision when to stop may be random, but must be based on the information available at time n.

Stopping time

Example. Pick a $p \in (0, 1)$. Let ξ_i be i.i.d., $P(\xi_i = 1) = p$, $P(\xi_i = -1) = 1 - p$, and $S_n = \sum_{i=1}^n \xi_i$, a one-dimensional simple random walk. Take $\mathcal{F}_n = \sigma\{\xi_1, \dots, \xi_n\}$ (with $\mathcal{F}_0 = \{0, \Omega\}$).

Then $T = \inf\{k : S_k \ge 10\}$ is a stopping time, as

$$\{T\leq n\}=\cup_{0\leq k\leq n}\{S_k\geq 10\}.$$

Note that it is possible that $T = \infty$, which happens with positive probability when p < 1/2 (as we will see).

On the other hand, $T' = \sup\{k \le 20 : S_k \ge 0\}$ is not a stopping time; for example

$$\{T'=0\}=\cap_{k=1}^{20}\{S_k<0\}\notin \mathcal{F}_0.$$

Stopping time

The main example of a stopping time is a *hitting time*. For $A \in \mathcal{B}(\mathbb{R})$, and X_n a process adapted to filtration \mathcal{F}_n , we define the hitting time

$$\tau_{\boldsymbol{A}} = \inf\{n \geq \mathbf{0} : \boldsymbol{X}_n \in \boldsymbol{A}\}.$$

As

$$\{\tau_{\mathbf{A}}\leq n\}=\cup_{k\leq n}\{X_{k}\in \mathbf{A}\},\$$

this is a stopping time.

Proposition

If S, T are stopping times, then so are $S \land T = \min\{S, T\}$ and $S \lor T = \max\{S, T\}$.

Proof for HW.

Assume that X_n is adapted to a filtration \mathcal{F}_n , and N is a stopping time for the same filtration. Let $H_n = 1_{\{N \ge n\}} = 1_{\{N \le n-1\}^c}$. This is a nonnegative predictable process, and

$$(H \bullet X)_n = \sum_{k=1}^n \mathbf{1}_{\{N \ge k\}} (X_k - X_{k-1}) = \sum_{k=1}^{N \land n} (X_k - X_{k-1}) = X_{N \land n} - X_0.$$

The process $X_{N \wedge n}$ is called the *stopped process*, and is clearly also adapted.

Corollary

If X_n is a supermartingale and N is a stopping time (with same filtration), then the stopped process is also a supermartingale. Therefore, $EX_{N \wedge n} \leq EX_0$. (Same for a submartingale and a martingale.)

Proof.

This follows from the martingale transform theorem.

Assume that X_n is a supermartingale and τ is a *finite* stopping time, i.e., $P(\tau < \infty) = 1$. Assume that either: (a) τ is bounded, i.e., $P(\tau \le a) = 1$ for some integer *a*; or (b) the stopped process is uniformly bounded, i.e., $\sup_n |X_{\tau \land n}| \le c$ for some $c \in \mathbb{R}$. Then $EX_{\tau} = EX_0$.

This is a special case of the *optional stopping theorem*, which we will prove is some generality later. Note that (a) and (b) both fail for the martingale.

Proof.

We know that $E(X_{n \wedge \tau}) \leq EX_0$, and we may send $n \to \infty$, using DCT in the case (b).

Stopping time

Example. Let S_n be a simple symmetric one-dimensional random walk, that is, p = 1/2. (In particular, $S_0 = 0$.) Fix $a, b \ge 0$ and let $T = \inf\{n : S_n = -a \text{ or } S_n = b\}$. Then S_n and $S_n^2 - n$ are martingales with $\mathcal{F}_n = \sigma\{\xi_1, \dots, \xi_n\}$. To check,

$$E[S_{n+1}^2 - (n+1) \mid \mathcal{F}_n] = E[S_n^2 + 2S_n\xi_{n+1} + \xi_{n+1}^2 - n - 1 \mid \mathcal{F}_n] = S_n^2 - n.$$

Then $P(T < \infty) = 1$ as $P(T > n) \le (1 - 2^{-a-b})^{\lfloor n/(a+b) \rfloor}$ and $|S_{n \land T}| \le \max\{a, b\}$. So, $ES_T = 0$, that is, $0 = -aP(S_T = -a) + bP(S_T = b)$, which implies that

$$P(S_T = -a) = rac{b}{a+b}, P(S_T = b) = rac{a}{a+b}$$

We also know that for all *n*,

$$E(S^2_{T\wedge n})=E(T\wedge n).$$

Send $n \rightarrow \infty$, using DCT on LHS and MCT on RHS, to get

$$ET = ES_T^2 = a^2 P(S_T = -a) + b^2 P(S_T = b) = ab.$$

Let *S* is the hitting time of 1, assume b = 1, and call previous time T_a . Then

$$P(S=\infty)=P(\cap_{a=1}^{\infty}\{S_{T_a}=-a\})=\lim_{a\to\infty}P(S_{T_a}=-a)=0,$$

and $T_a \uparrow S$ as $a \to \infty$, so $ES = \lim ET_a = \infty$. More on this later.