doesn’t look like figure 3.2. At an intuitive level, the global structure of the
stock index is different. It grows, gets ‘noisier’ as time passes, and doesn’t go
negative. Brownian motion can’t be the whole story.

But we only want a basis — the single binomial branching didn’t look
promising right away. We shouldn’t run ahead of ourselves. Brownian
motion will prove a remarkably effective component to build continuous
processes with — locally Brownian motion looks realistic. We should study it

closely before we rush on.

Brownian motion
It was nearly a century after botanist Robert Brown first observed micro-
scopic particles zigzagging under the continuous buffeting of a gas that the
mathematical model for their movements was propetly developed. The first
step to the analysis of Brownian motion is to construct a special family of
discrete binomial processes.

—

The random walk W(t)
For n a positive integer, define the binomial process Wh(t) to have:

() Wa(0)=0,
(i) layer spacing 1/n,
(i) up and down jumps equal and of size 1/ v,

(iv) measure P, given by up and down probabilities everywhere equal to 3.

In other words, if X1, X2, ... 1s a sequence of independent binomial ran-
dom variables taking values +1 or —1 with equal probability, then the value
of W, at the ith step is defined by:

Xi
/\mu

The first two steps are shown in figure 3.3. What does W, look like as n

W (3) = Wa (55) +

n

foralli > 1.

gets large?
Instead of blowing out of control, the family portraits (figure 3.4) appear
to be settling down towards something as n increases. The moves of size
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1/y/n seem to force some kind of convergence. Can we make a formal
statement? Consider for example, the distribution of W, at time 1: fora
particular W,,, there are n + 1 possible values that it can take, ranging from
—y/n to y/n. But the distribution always has zero mean and unit variance.

, . .
(Because W,(1) is the sum of n 11D random variables, each with zero mean
and variance 1/n.)

time: 0 time: 1/n time: 2/n

Figure 3.3 The first two steps of the random walk W,
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Figure 3.4 Random walks of 16, 64, 256 and 1024 steps respectively

Moreover the central limit theorem gives us a limit for these binomial
distributions — as n gets large, the distribution of W;,(1) tends towards the
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