Math 236A, Fall 2012.

Homework Assignment 3

Due: Oct. 26, 2012

- 1. Let τ_a be the first time a standard Brownian motion in one dimension hits a > 0.
- (a) Compute the density of τ_a .
- (b) Either from (a) or (much more easily) by using an appropriate martingale, compute $E(\exp(-\lambda \tau_a))$, for any $\lambda > 0$.
- (c) Let b > 0 and let τ_{-b} be the first time the Brownian motion hits -b. Show that

$$E(\exp(-\lambda \tau_{-b})1_{\{\tau_a < \tau_{-b}\}}) = E(\exp(-\lambda \tau_a)1_{\{\tau_a < \tau_{-b}\}}) \cdot E(\exp(-\lambda \tau_{a+b})).$$

- (d) Let $\tau = \tau_a \wedge \tau_{-a}$. Compute $E(\exp(-\lambda \tau))$.
- 2. Let B be the Brownian motion in two dimensions, started at (0, a), a > 0. Let now τ be the first time B hits the line αx . Also, let X be the x-coordinate of the point $B(\tau)$.
- (a) Determine the density of X when $\alpha = 0$. (*Hint*. Condition on the value of the stopping time τ_a from problem 1(a).)
- (b) Now determine the density of X when $\alpha \neq 0$. (Hint. Use orthogonal invariance.)