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Preface

The pages that follow are a record of ten lectures I gave during September of
1970 at a Regional Conference in the Mathematical Sciences at Iowa City,
sponsored by the Conference Board of the Mathematical Sciences and the
University of Jowa with support from the National Science Foundation.

The lecturescover a subset of the material in my book, Convergence of Probability
Measures, proceeding in a direct path (at a pace brisker than that of the book)
from the beginnings of the subject to its applications in limit theory for dependent
random variables.

The present treatment departs from the book in many particulars. For exampie,
the mapping theorems are here proved via Skorokhod’s representation theorem,
Prokhorov’s theorem is proved by construction of a content, and the maximal
inequality of § 6 is given a proof devised by Michael Wichura. Most important,
the limit theorems at the end are proved under a new set of conditions which
apply fairly broadly (not quite so broadly as the ones in my book) but at the same
time make possible relatively simple proofs. There is a bibliography of recent
papers.

Prerequisite for reading this account are the basic parts of metric-space topology
and measure-theoretic probability, and one result of functional analysis, the
Arzela—-Ascoli theorem.

Thanks are due those who attended the conference for sharp cross-examina-
tion and interesting commentary. Special thanks are due Robert V. Hogg, who
organized the conference, and John D. Cryer, who took an excellent set of notes.

Chicago PATRICK BILLINGSLEY

May 1971
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Weak Convergence of Measures:
Applications in Probability

Patrick Billingsley

1. Introduction. Let Q be the unit interval [0, 1], let # consist of the Borel sets
in [0, 1], and let P denote Lebesgue measure on 4, so that (Q, %, P) is a prob-
ability space. Define

X(wy=10
for 0 £t £ 1and wef), and define
0 if t+# w,
Y(w) = .
11 f t=w

for t and w in the same ranges. Then P{X, = 0} = P{Y, = 0} = 1, so that the
stochastic processes [X,:0 <t <1} and {Y:0 <t < 1} have the same finite-
dimensional distributions, in the sense that

P{X, Sxy, -, X, SEx3 =P, £x,---. ¥,
for all choices of the t; and x;. On the other hand,

sup X(w)=0, sup Y(w)=1
0=tg1 0511
for all w.

Thus the finite-dimensional distributions of a stochastic process by no means
determine the distribution of every function of the process. In order to derive the
distribution of a given function of a process one may require, beyond a specification
of the finite-dimensional distributions, some kind of regularity condition that in
effect involves all time points simultaneously (separability of the process is such a
condition).

Something analogous arises in connection with limit theorems. Suppose
X {w) = 0, as before, and suppose

nt f 0<st%5 -,
( o 2
XMw)y=<2~n if -1,
n R

2
0 if S<e<

S n
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In other words, for each w, X!"(w) is, as a function of ¢, the function with graph
shown in Fig. 1.

o] 2/n {
FiG. |

For each positive t, X!"(w) = 0 if t > 2/n, and hence

lim P X" < xp, -+, X < x} = P{X,, S x1, -, X, S %)
n—+w
for all choices of the t; and x;. In other words, the finite-dimensional distributions
of the process { X:0 < ¢t < 1} converge to those of {X,:0 < t < 1}. Nonetheless,
sup X™w) =1, sup X/ (w)=0.
0511 0s151
(This is the advanced-calculus example of a sequence pointwise but not uniformly
convergent ; that it involves no real randomness makes it simple but not irrelevant.)
Thus the convergence of the finite-dimensional distributions does not imply the
convergence of the distribution of every function of the processes. In order to
derive the limiting distribution of a given function of the processes one may require,
beyond convergence of the finite-dimensional distributions, some convergence
condition that in effect involves all time points simultaneously. The theory of
weak convergence of probability measures on metric spaces provides such
conditions. When applied in appropriate spaces of functions, the theory gives a
powerful way of treating convergence problems that go beyond finite-dimensional
cases, problems that arise in a natural way in applications.

2. Weak convergence. Let S be a metric space. We shall assume throughout
all that follows, without further mention of the fact, that S is both separable
and complete. The interior and closure of a set A we denote A° and 4~ respec-
tively, and its boundary A~ — A° we denote 04. The distance between points is
p(x, y), and the distance from x to aset 4 is

p(x, Ay = inf{p(x, y):ye A} ;
plx, A} is continuous in x. The d-neighborhood of a set A is
(2.1) A% = {x:p(x, A) < 8}.
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The class of bounded, continuous real-valued functions on § we denote C(S).

The open sets in S generate a o-field denoted & ; the elements of & are called
Borel sets. We work with Borel sets exclusively : each set introduced is assumed to
be a Borel set, and each set constructed during the course of a proof can be shown,
by an argument ordinarily omitted, to be a Borel set. Similarly, all functions are
measurable with respect to %.

We shall be concerned with nonnegative, completely additive set functions P
on & satisfying P(S) = l-—that is, with probability measures. If P, and P are
probability measures (on (S, &)), we say P, converges weakly to P, and write
P =P if

(2.2) lim | 4P, = f fdP

n=cc

for all functions f in C(S). (We omit the region of integration if it is the entire
space.)

A set whose boundary satisfies P(0A4) = 0 is called a P-continuity set. The
definition of weak convergence is framed in terms of the convergence of integrals
of functions. The following basic theorem characterizes it in terms of the con-
vergence of measures of sets.

THEOREM 2.1. These four conditions are equivalent

(a) P,= P,

(b) lim sup, P(F} £ P(F) for all closed F,

(c) liminf, P(G) = P(G) for all open G,

(d) lim, P(A) = P(A) for all P-continuity sets A.

Proof. We first show that (a) implies (b). Suppose (a) holds and suppose F is
closed. Given a positive & choose a positive § such that (see the definition (2.1))

P(F®) < P(F) + ¢,

which is possible because F° | F as § | 0, F being closed. Now let

1 if 1t<0,
o) =<1—-¢t if 0L,
0 if t21,

and define

f(x) = cv(%p(x,F))-

Since f is nonnegative and assumes the value 1 on F,

PR = | sap,s [ 1ap,
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Since f vanishes outside F* and never exceeds I,
ffdP = FdfdP < P(FY).
Finally, since P, = P and f is an element of C(S),
lim,,ffdP,, = jfdP.

Therefore,

lim sup, P,(F) < lim, f fdP = f fdP < P(F% < P(F) + ¢.

Since ¢ was arbitrary, (b) follows.
A simple complementation argument proves the equivalence of (b) and (c).
Now (b) and (c) together imply (d) because they imply

P(A™) = hm sup, P,(A7) = lim sup, P,(4),
2 liminf, P(A) = tim inf, P,(A°) = P(4°),

and, if P(6A4) = 0, the extreme terms are equal so that there is equality throughout.

The proof will be complete if we show that (d) implies (a). So we assume (d)
and prove that (2.2) holds for f in C(S). Choose o and f so that & < f(x) < S for
all x. Now there are only countably many y for which P{x:f(x) = y} > 0. Given
& choose o; so that a =g <oty < -+ <o =f, oy — a;_; < ¢ and P{x:f(x)
= a;} = 0. If y is a boundary point of

(2.3) {x:0,_; < f(x) £ o},

then f(y) is either o, _, or «;, so the sets (2.3) are P-continuity sets. Now

k K
24) Y o Pixiy < fl)Se) £ J‘fdPn = z o Pu{xie; < fx) £ o}
i=1 i=1

and
k

(2.5) i o P{xia;_; < f(x) S o} gffdP = Z wP{xzop_, < f(x) S .
i=1 1

i=

Since the sets (2.3) are P-continuity sets, it follows from the condition (d) that the
extreme terms in (2.4) converge respectively to the extreme terms of (2.5). The
latter differ by at most & since o; — @, _, < & Hence the limits superior and inferior
of | fdP, are within ¢ of [ fdP, and (2.2) follows because ¢ was arbitrary.

Suppose now that the probability measures P and Q satisfy

(2.6) j Fdp = f 7dg

for all fin C(S). If P, = Q, then P, = @, and from Theorem 2.1 we conclude that
Q(F) < P(F)for all closed F. Since the roles of Q and P may be interchanged in this
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argument, P and Q agree for closed sets and hence also for open sets. Let % consist
of those sets A that are F,-sets (that is, F, T A for some sequence of closed sets)
and are at the same time G4-sets (that is, G, | A for some sequence of open sets).
A closed set F is of course an F, and is a G; because it is the limit of the open
sets F'/". Thus % contains the closed sets and similarly the open sets, and it is not
hard to show that ¢ is a finitely-additive field, which of course generates the
o-field . If P and Q agree for open sets and closed sets, they certainly must agree
for sets in ¢ and hence for all sets in &, Thus (2.6) implies P and Q are identical.

If P, = P and P, = Q, then (2.6) must hold, so P and Q are the same. Thus there
can be at most one weak limit.

It is possible to metrize the space of probability measures on S in such a way
that it becomes a separable complete metric space and convergence in the metric
is equivalent to weak convergence. We shall never use this fact; we shall instead
continue to work directly with the notion of convergence: P, = P.

THEOREM 2.2. If each sequence {P,} of {F,} contains a further subsequence
{P,} such that P, = P asm— co, then P, = P as n — oC.

Proof. If P, does not converge weakly to P, then (2.2) fails for some f in C(S),
so that

jffdpm _ ffdpf >e

for some positive ¢ and all P, in some subsequence. But then no subsequence of
{P,,} can converge weakly to P.

The classical case of weak convergence concerns the real line R' with the
ordinary metric and probability measures on the class#' of Borel sets on the
line. Such a probability measure P is completely determined by its distribution
function F, defined by

F(x) = P(— o, x].

Suppose {P,} is a sequence of probability measures on (R, #') with distribution
functions F,.

THEOREM 2.3. If P, = P, then F,(x) — F(x) at all continuity points x of F, and
conversely.

Proof. If x is a continuity point of F, then (— oo, x], whose boundary is {x},
is a P-continuity set, so that F,(x) = P(— o, x] = F(x) = P(~— o0, x].

Suppose on the other hand there is convergence of the distributions functions
at continuity points of the limit. Given ¢, choose continuity points a and b of F so
that a < b, F(a) < ¢, and F(b) > 1 — ¢ And given an fin C(R!), choose continuity
points x; of F such that a = xy < x; < --- < x, = b and {f(x) — f(x,)| < ¢ for
xi—y £ x < x;. Let S be the Riemann sum Y *_, f(x)[F(x) — F(x;-,)] and let
S, be this sum with F, replacing F. Let M be an upper bound for | f(x)}. By hypo-
thesis, S, — S, and since

deP-Sl§£+MF(a)+M(I—F(b))<(2M+1)8
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and

U-fdP,, - S, Se+ MFjfa) + M(1 — F (b)) » ¢ + MF(a)

+ M(1 —~ F(b)) < 2M + 1),

the limits superior and inferior of f f dP, are within (4M + 2)e of | f dP, which
completes the proof since £ was arbitrary.

A probability measure on the class #* of Borel sets in k-dimensional Euclidean
space R* is determined by its distribution function

F(xls""xk)=P{)’:(,Vn"‘s)’k):}’l é—xl""’.}’kéxk}'

The analogue to Theorem 2.3 holds and can be proved by a consideration of
k-dimensional Riemann sums.

3. Random elements and convergence in distribution. Let S be a metric space
as before, and let (Q, #, P) be a probability measure space. A mapping X :Q — §
is called a random element of S if it is measurable in the sense that {w: X(w) e 4}
= X 'Ae & for each Ae.¥. Special cases are random variables (§ = R!) and
random vectors (S = R*). The distribution of X is the measure P = PX "!on &:

P(A) = PX~1(A4) = P{w:X(w)e A} = P{X € 4}.

Suppose in addition to X we have a sequence of random elements X, of §,
defined on spaces (Q,, #,, P,), with distributions P, = P, X, !. If P, = P we say
X, converges in distribution to X and write X, = X. Every result about weak
convergence has an anologue about convergence in distribution, and vice versa,
and to pass from the one to the other requires not a proof, but merely a translation.
For example, by Theorem 2.1, X, = X if and only if lim sup, P {X,e F} < P{X e F}
for all closed sets F.

Suppose X, and Y, are both random elements of § defined on Q,. We shall drop
the subscript » from P,.

THEOREM 3.1. If X, = X and the distance p(X,, Y,) converges to 0 in probability,
then Y, = X.

Proof. Clearly P{Y,eF} < P{X,e(F®"} + P{p(X,,Y,) = 6}. The second
term here goes to 0 since p(X,, ¥,) converges in probability to 0, and since X, = X,
we have

limsup, P{Y,e F} £ P{Xe(F)"}.

Since (F%)~ | F as 6 | 0 if F is closed, the result follows.

Let us use the term Lebesgue interval to refer to the probability measure space
Q, B, P), where Q is the unit interval, £ is the o-field of Borel sets in Q and P
is Lebesgue measure on 2.

THEOREM 3.2. For each probability measure P on (S, &), there is a random element
of S, defined on the Lebesgue interval, with distribution P.
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Proof. For each k, construct a decomposition &, = {4;,, Asz, -} of § into
disjoint sets of diameter less than 1/k, and arrange that < ,, refines .. And
construct a decomposition %, = {I;,, I;,, - - -} of the unit interval into subintervals
whose lengths satisfy {I,,] = P(A,,). and arrange that .%,, refines .4,. Finally,
arrange the indexing so that 4,, o A,,,, if and only if I;, = I, ,. The con-
struction can be carried out inductively because, if {,,!,, --- are nonnegative
numbers adding to the length of an interval, that interval can be split into sub-
intervals of lengths I, 1,, --- .

Let x,, be some point in A,,. and define a random element X, by

(3.1) Xw)=x, f wel,.

Since { X (w), X, , ,(w), - - -} is contained in some one element of <, its diameter
is at most 1/k; thus {X,(w)} is a Cauchy sequence for each w, the limit X(w)
= lim, X (w) exists, and this limit satisfies

1
(3.2) pX(w), X(w) = o

If a prime denotes a sum or union extended over those u for which A, meets a
given set F, then

PiX,eF} S P{X, e U'4,} =Y P{X, e Ay}
=2 Ml = Y P(A) £ P(FY)7).
If F is closed, it follows that
lim sup, P{X, e F} £ P(F).

Thus the distribution of X, converges to P, and hence, by (3.2) and Theorem 3.1
(with Y, = X), X has distribution P.

We turn now to the Skorokhod representation theorem, an extension of
Theorem 3.2. In addition to P, consider a sequence {P,} of probability measures
on S.

THEOREM 3.3. If P, = P, then there exist on the Lebesgue interval random elements
X, and X which have respective distributions P, and P and satisfy lim, X (0) = X(w)
for each w.

Proof. Construct the decompositions &/ of the preceding proof, but this time
require that each A4,, be a P-continuity set. (Since d{y:p(x, y) < é} = {y:p(x, )
= &}, the spheres about x are P-continuity sets except for countably many radi,
so S can be covered by countably many P-continuity sets of diameter less than 1/k.
The usual procedure for rendering the sets disjoint preserves P-continuity because
(A N B) = (6A) U (6B).)

Consider the decompositions %, as before, and, for each n, construct successively
finer partitions SF{" = {1, I, -- -} with ]I\ = P,(4,.). Inductively arrange the
indexing so that (here I < J for intervals means the right endpoint of I does not
exceed the left endpoint of J) If? < I}V if and only if I,, < I,. In other words,
ensure that for each & the families %, #", #?, - - - are ordered similarly.
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Define X, by (3.1), as before, where x,, € 4,,, and define
XP(w) = x,, if welfl.
Again X (w) converges to an X(w) satisfying (3.2), and X{™(w) converges (k — o0)
to an X“(w) satisfying

(3.3) pX M), X{P(w) £

x| e

And again X has distribution P and X*™ has distribution B,.
Since ), [P(Ay,) — P(A4,)] = 0, we have

LI — 1] = Y IP(A) — P4
=23 [P(Aw) — PAw)] = 2} [P(Aw) — P47,

where the next-to-last sum extends over those u for which the summand is positive.
Each summand goes to 0 as n — oo because the A4,, are P-continuity sets, and it
follows by dominated convergence that

(34) lim ¥ ) — 1G] = 0.

Fix k and ug, let o and a, be the left endpoints of I, and I{7 respectively, and
let )’ indicate summation over the set of u for which I,, < I, (which is the same
as the set for which I{y < I). Then (3.4) implies

o =Yl = lim Y I = lim a,.

Similarly the right endpoint of I{? converges as n — oo to the right endpoint of
]kuc

Hence, if w is interior to I,,, then w lies in I for all sufficiently large n, so that,
by (3.2) and (3.3),

=N

(3-5) pX(w), Xw)) S

Thus, if w is not an endpoint of any [,,, then, for each k, (3.5) holds for all
sufficiently large ». In other words, lim, X'"(w) = X(w) if w is not in the set of
endpoints of the I,. This last set, being countable, has Lebesgue measure 0,
so that, if X™(w) is redefined as X(w) on this set, X" still has distribution P,,
and there is now convergence for all w. This proves the theorem (with X* for
X.).

The theorem can be restated: Consider random elements X and X, of §;
they may all be defined on different probability spaces.

COROLLARY 1. If X, = X, then there exist on the Lebesgue interval random
elements Y, and Y which have the distributions of X, and X respectively and which
satisfy lim, Y (w) = Y{(w) for all w.
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If P is a measure on S, and if fis a mapping from § to another metric space §',
measurable in the sense that f ~'4 € & if A is in the o-field &' of Borel sets in §,
then Pf~! is the probability measure on .’ defined by Pf~!(4) = P(f " 'A).
Suppose, in addition, we have a sequence of measures P,. Let D, be the set of
discontinuities of fand assume it lies in &

COROLLARY 2. If B = P and P(D;) = 0, then P,f "' = Pf~ 1.

Proof. Consider the random elements of Theorem 3.3. Now lim, X () = X(w)
for each w, and if f'is continuous at X{w), which by hypothesis holds except on an
w-set of Lebesgue measure 0, then

(3.6) lim, f(X (@) = f(X(w)).

Thus (3.6) holds for almost all w, and, since f(X,) and f(X) have respective
distributions P, ~! and Pf "', it follows that P,f ~! = Pf ~ L.

COROLLARY 3. If X, = X and P{X e D;} = 0, then f(X,) = f(X).

This coroilary is a direct translation of Corollary 2. It can also be deduced
from Corollary 1.

COROLLARY 4. If random variables X, and X satisfy X, = X, then

(3.7 E{IX|} < lim sup, E{|X,}}.

COROLLARY 5. If random variables X, and X satisfy X, = X, and if the X, are
uniformly integrable in the sense that

(3.8) lim sup | X, dP =0,

SRR 1P S
then X is integrable and
lim, E{X,} = E{X}.

To prove Corollary 4, consider the random variables Y, and Y guaranteed by
Corollary 1. Fatou’s lemma implies E{|Y|} < lim sup, E{|Y,i}. and (3.7) follows
because Y, and Y have the distributions of X, and X. (The E in (3.7) denotes
expected value with respect to whatever probability measure governs the random
variable in question.) Corollary 5 similarly reduces to a standard fact of integration
theory.

Theorem 3.3 can be used to give simple proofs of many results in statistics,
for example, those connected with the §-method.

4. Prokhorov’s theorem. A family IT of probability measures on § is said to be
relatively compact if each sequence { P,} of elements of I contains some subsequence
{P, } converging weakly to some probability measure P. The limit P is not required
to lie in IT, but of course it must be a probability measure on S.

It is possible to metrize the space of probability measures on S (see the remarks
preceding Theorem 2.2}, and I1 is relatively compact if and only if it has compact
closure in this metric. It is not necessary to go into this matter, however, because
the definition above makes good sense as it stands.
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The following theorem, due to Prokhorov, is basic to the application of weak
convergence in probability theory. The family I1 is said to be tight if, for each
positive ¢, there is a compact set K, for which P(K,) > | — e forevery Pin II.

THEOREM 4.1. The family 11 is relatively compact if and only if it is tight.

Proof. Suppose that [1 is tight. There is a sequence {K,} of compact sets such
that K, « K, = ---and P(K,) > | — 1/ufor all u. Let o be a countable collection
of open spheres forming a base for the topology of §, and let 2 consist of the finite
unions of sets of the form A~ n K, with u = 1 and A4 an element of /. Then #
is countable and is closed under the formation of finite unions, and each set in
H is compact.

Given a sequence {P,} in Il, select by the diagonal procedure a subsequence
{P,} along which limits
4.1) «(H) = lim P,(H)
exist for all H in . Suppose there exists a probability measure P such that
(4.2) P(G) = sup a(H)

H<G
for all open sets G. Then P, => P as i —» ¢ because, if H < G, o(H) = lim,; P, (H)
< lim inf; P,(G), whence P(G) < lim inf; P, (G) follows via (4.2), proving weak
convergence. Thus it suffices to produce a P satisfying (4.2).
Clearly a(H), defined by (4.1) for all H in #, has these properties:

4.3) oH)SaoH,) if H < H,;

4.4) olH, wH,)=aH)+«H,) f H ~"nH,=0;
(4.5) oH, UH,) £o(H,)+ afH,).

Define

(4.6) A(G) = sup a(H)

for open sets G, and then define
M) = inf B(G)
McG

for arbitrary subsets M of S. Clearly (G) = B(G) for open G.

Now suppose we succeed in proving that y is an outer measure and that each
closed set is y-measurable (measurable with respect to y). Then all sets in & will
be y-measurable (recall the y-measurable sets form a o-field) and the restriction
P of y to & will be a measure satisfying P(G) = ¥(G) = B(G), so (4.2) will hold
for open G as required, and P will be a probability measure because

1
-3,
u

We first prove that f is finitely subadditive (on open sets): If H = G, U G,
and He s, define F, = {xe H:p(x, G}) = p(x,G5)} and F, = {xe H:p(x, G5)

12 P(S) = B(S) = sup «(K,) = sup
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Z p(x, G})} (see Fig. 2). If xe F, and x ¢ G, then x € G,, so that, since G is closed,
plx, G9) = 0 < p(x, G5), a contradiction. Thus F, < G,; similarly F, = G,.
Since F, is compact, being a closed subset of the compact set H, and F, is inside
the open set G,, it follows by the definition of # that F, <« H; < G, for some
H,inH; similarly F, c H2 < G, for some H, in 3#. But then o(H) < o(H, v H,)
S ofH,) + a(H,) = B(G,) + B(G,) by (4.3), (4.5), and (4.6). Since we can vary H
inside G, w G,, f(G, U G ) £ ﬁ(G )} + B(G,) follows.

/N
CFR) »
%

FiG. 2

Next, § is countably subadditive (on open sets): For, if H < U, G, then, since
H is compact, H = U,_, G, for some n,, and therefore, by finite subadditivity,
o(H) £ B(U,c,, G = Z,,é,,o B(G,) < >, B(G,). Taking the supremum over H
inside U, G, gives 8(U,G,) < Y, A(G,).

And y is an outer measure: Since 7 is clearly monotone, we need only prove it
countably subadditive. Given a positive e and arbitrary subsets M, of S, choose
open sets G, such that M, < G, and B(G,) < ¥(M,) + &/2". Then, by the countable
subadditivity of B, y(U M,) £ B(Y, G,,) s Y, BG,) <Y, 7(M,) + & whence,
¢ being arbitrary, we conclude y( U, M) = Z P(M,).

It remains only to prove that each closed set is y-measurable. We must show that,
if F is closed and M arbitrary,

4.7) WM) 2 Y M F) + 9(M n F9)

(the reverse inequality follows by the subadditivity of y). To prove (4.7) it suffices
to prove

(4.8) B(G) 2 WG n F) + AG N F)

for open G, because then G > M implies 8(G) = y(M n F) + (M n F°)and taking
the infimum over G gives (4.7).

To prove (4.8), choose, for given positive ¢, an H, in # for which Hy € G n F¢
and a(Hy) > B(G N F) — e. Now choose an H, in 4 for which H; = G n Hj
and a(H,) > B(G n H) — & Since H, and H, are disjoint and are contained in
G (see Fig. 3), it follows by (4.4) that B(G) = a(H, v H,) = «(H,) + «(H,)
>PHGCAF)Y+BGAHG) —26ZWGAF)+9GAF)— 2. Since & was
arbitrary, this proves (4.8).

We turn to the conversc problem of showing that a relatively compact I must
be tight. Consider a sequence 4,, 4,, - - - of open spheres of radius é that cover S.
For each ¢, there exists an n such that, if B, = U,_, 4;,P(B,) > 1 — ¢ for all P
in I1, because otherwise for each n we have P(B,) < 1 — ¢ for some P, in [I,
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FiG. 3

and by relative compactness P, = P, for some subsequence { P, } and probability
measure Py, which is impossible because Py(B,) < liminf; P, (B,) < liminf, P, (B, )
£ 1 — ¢ while B, 1S.

Thus for each positive ¢ and &, there are finitely many spheres A,,:--, A4, of
radius d such that P(U;., 4) > 1 — eforall P in I1. Choose spheres Ay, , - , Ay,
of radius 1/k such that P(U,., 4,) > 1 — &2 If K is the closure of the totally
bounded set Ny, U, A,;, then K is compact and P(K) > 1 — ¢ for all P
in IL

5. The space C. From here on we shall be concerned with the space C of
continuous functions x = x(t) on the closed unit interval, metrized by

plx,y) = sup |x(t) — w1
0=ttt

We denote by € the o-field of Borel sets in C, and we shall be concerned with
probability measures on (C, %).

0=t <t <.+ <t £ 1, the mapping 7., (x) = (x(t,), - - -, x(t;)) carries
C continuously into R*. Sets of the form =}’ H with H an element of #*, a Borel
set in R* (k and t,, - --, t, arbitrary), are called finite-dimensional sets, and the
finite-dimensional sets form a finitely additive field. The closed sphere of radius r
about x is the intersection of the finite-dimensional sets {y:|y(t) — x(t) = r}
with ¢ ranging over the rationals; each open sphere is a countable union of closed
spheres and each open set is a countable union of open spheres and hence lies in
the o-field generated by the finite-dimensional sets. Thus the finite-dimensional
sets form a finitely additive field generating €.

For a probability measure P on C, the various measures Prx, !, on the spaces
RF are called the finite-dimensional distributions of P. If two measures have the
same finite-dimensional distributions, they agree for finite-dimensional sets, and
hence, since these sets constitute a field generating ¥, they are the same measure.
Thus the finite-dimensional distributions Pn, ', of P uniquely determine P itself.

Suppose now that x(t) = 0 and that x, is the function given by

nt if 0§t§5,
n
x{)=4¢2—-nt if lgtgg,
hn n
0 if ggrgl;
\ n
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let P be a unit mass at x (that is, P(4) is 1 or 0 according as x lies in A or not)
and let P, be a unit mass at x, Now if 2/n is less than the smallest nonzero t;,
then x and x, either both lie in ;- ! H or else neither one does, so that P1t,l wlH)
= Pn,‘l‘,k(H) Therefore there is weak convergence P,m, ', => Pn.!, in R*
for each t,, ---, t,. On the other hand, the set {y {y(t) < 1/2,0 <t £ 1}, the
sphere of radius 1 /2 about x, is a P-continuity set and P,(4) = 1 does not converge
to P(4) = 0. Thus P, does not converge weakly to P.

This example shows that if there is convergence of the finite-dimensional

distributions, that is, if
(5.1) Pmn !, = Pn_

e tk u Ik
for all k and ¢,, ---, 1,, 1t does not follow that there is weak convergence of P,
to P:
(5.2) P, = P.

(The converse proposition of course does hold because of Corollary 2 to Theorem
3.3.) Thus weak convergence in C involves considerations going beyond finite-
dimensional ones, which is why it is useful (see the introduction).

On the other hand, (5.1) does imply (5.2) in the presence of relative compactness.

THEOREM 5.1. If (5.1) holds for all k and t,--- 1., and if {PB,} is relatively
compact, then (5.2) holds.

Proof. Since {P,} is relatively compact, each subsequence {F,} contains a
further subsequence {F, } such that P,, =0 as m — oo for some probability
measure ¢ on C. But then P, 717,1 = Qn,, > SO that, because of (5.1}, Qn, b,
= Pn’,. Thus P and Q have the same finite-dimensional distributions and,
as observed above, this implies P = Q. Thus each subsequence of { P,} contains a
further subsequence converging weakly to P, and (5.2) follows by Theorem 2.2.

Theorem 4.1 characterizes relative compactness by tightness. In order to apply
Theorem 5.1 in concrete cases, we shall in turn characterize tightness by means
of the Arzela-Ascoli theorem.

For xe C and é > 0, the modulus of continuity is defined by

w(8) = sup{|x(s) — x(t):0 S 5,1 S 1,|s — 4 < 8}.

According to the Arzeld-Ascoli theorem, a set 4 in C has compact closure if and
only if

(5.3) su;calx(O)l <

and

(5.4) lim sup w(d) = 0
-0 xeC

THEOREM 5.2. A family I1 of probability measures on C is tight (hence relatively
compact) if and only if for each n there exists an a such that

(5.5) P{x:x(0) > a} <%, Pell,
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and for each n and ¢ there exists a 6 such that
(5.6) P{x:w/(d) >¢e} <5, Pell.

Proof. Let A, be the set in (5.5) and let B, ; be the set in (5.6). If IT is tight, then,
for each n there is a compact set K such that P(K) > 1 — # for all P in I1. But,
by the Arzela-Ascoli theorem (see (5.3) and (5.4)), K <= A for large aand K < B,
for small 8, so (5.5) and (5.6) hold.

On the other hand, if (5.5) and (5.6) hold and » is given, choose a and §, so that
P(A,) < n/2and P(B,-.,) <n/2**'forallk = 1,2,---and all Pin IL If K is the
closure of A5~ N, Bi-1 ;.. then P(K) > 1 —# for all PeTl, and, by the
Arzela—Ascoli theorem, K is compact.

Since an individual measure P forms a tight set (because it forms a relatively
compact one), the inequalities in (5.5) and (5.6) hold for a single given P for large
enough a and small enough é. As sufficient conditions for tightness, therefore, we
may relax (5.5) and (5.6) by allowing them to fail for finitely many P in [I, since
these exceptional P may be provided for by increasing a and decreasing J. Thus
Theorem 5.1 has an alternate form in case IT is a sequence.

THEOREM 5.3. A sequence {P,} of probability measures on C is tight {(hence
relatively compact) if and only if for each n there exist a and ng, such that

(5.7) P{x:Ix(0) > a} < 1, nz o,
and for each n and ¢ there exist 6 and n, such that
(5.8) Pix:w(d) > ¢} < n, n = ng.

The P, we shall be concerned with arise as distributions of random elements of
C, which we call random functions, constructed in the following way. Let £, &,, ---
be a sequence of random variables defined on some probability measure space
(Q, #,P), define §, =&, + --- + & (with S; = 0),and forweQand 0Lt £ 1
put

]
(59) X,(t,0) = - fS‘""" ———\/[-'-Zl—éwm(w),

where ¢ ts a positive constant.

For each w, X (t, w) is, as a function of ¢, an element of C; at t = k/n its value is
S ,,(w)/o'ﬁ, and it varies linearly in the intervals between such points. This element
of C we denote X, (w); this is the value at w of a mapping from Q to C, and we
denote the mapping itself by X,. On the other hand, if ¢ is fixed, w — X, (t, w)
gives a mapping from Q to R, and we denote this mapping by X,(1);itis, by (5.9} an
ordinary random variable on Q. If 4 = x, ", H is a finite-dimensional set in
C(H € #%), then

X4 ={w X wyeAd} = {w(X{t;,w), -, X,({t,, ®)) e H}

liesin 2. Since X, !4 € # for finite-dimensional sets A4, and since the latter sets
generate &, it follows that X, !4 e & for all Ae¥. In other words, w — X (w)
is a measurable mapping and hence X, is a random element of C.
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We shall be interested in proving that the random functions X, converge in
distribution under appropriate conditions, and this will require establishing that
their distributions are tight.

THEOREM 5.4. If the sequence {&,} is stationary, and if for each ¢ there exists a
A, with A > 1, and an ng such that

(5.10) P{maxi$) 2 do/n} < % n2ng,

then the distributions on C of the random functions (5.9) form a tight sequence.
Proof. Certainly the distributions P, of the X, satisfy (5.7) since X (0, w) = 0,
and what we must verify is (5.8). For given ¢ and #, there exist, by the hypothesis
(5.10) with £24/6 in place of ¢, a A > 1 and a d,, such that
2

(5.11) P{maxs) 2 Jo\/d} < & o
ifd = d,.
Define 6 by
82
(5.12) 0= 671—2—;

A > 1 and there is no loss of generality in assuming ¢ < 1,500 < § < 1. Given n,
choose an integer d so that

{5.13) 2né > d = nd;

since ¢ is now fixed, there is such a d for all sufficiently large r, and moreover
d Z d, for sufficiently large n, so that (5.11) is available. By (5.13) and (5.9),

(5.14) Pfx:wy(x) Z ¢} < P{max|S; — §) = ea\/n},

where this maximum extends over i and j satisfying 0 <igj<n |j—§ <d.
If

M,;,= max |[S;~- §],
i<jsi+d

then the maximum in (5.14) is.at most

3max M, ,,
k<n/d ’

and it follows by stationarity that

=n/d

n 1
< — > -
=dP{ni1§a;(!S,1 > BEGﬁ}.

(5.15) Pix:wyx) = e} <P max Mua2 ea\/;}
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By (5.13), njd < 6" ', and by (5.13) and (5.12),

so (5.11) and (5.15) imply
2
&
Pxiwlx) 2 8} £ 87 o = .

which completes the proof.

6. A maximal inequality. In order to apply Theorem 5.4, we need an effective
way to bound the probability in (5.10). Let &,,---, £, be random variables
(stationary or not), let S, = &, + --- + £.(S, = 0), and put
(6.1) M, = max|S.

k=n
What we need is an upper bound for P{M, = 4}, and we shall derive one by an
indirect approach.

Let
{6.2) m;u = min{|S; — S}.(S, — §}},
and put
6.3 L,=max{m; 0<i<j<k=n}.

Since |S,| 1S, — Sy + 1S,/ and {S,| < |S,] + IS,|, we have |S,| < mg,, + 1S,|, and
therefore

(6.4) M, < L, + 1S,
If{S,) = 0, then obviously
(6.5) IS, = 2L, + TSaXIf:J-

And this also holds if |S,] > 0, because then there exists a k (1 < k < n) for which
{Sil 2 1S, — S.|and hence there exists a smallest such, so that |S, _,| < |S, — S, _,|;
then |S, — S = mow < L, and |S,_,] = mg_,,, < L,. and hence {S,| < [S,-,!
+1&d + 1S, — Sd = 2L, + [&d, s0 (6.5) follows. Finally (6.4) and (6.5) combined
give

(6.6) M, 3L, + rknax}{;kJ.

There are various ways of bounding the tails of the distributions of |S,] and
max, .,/ &, so (6.4) and (6.6) can be used to bound the tail of the distributions of
M, if we can bound P{L, > A}. We can derive such a bound by assuming bounds
on the tails of the distributions of the quantities (6.2) of which L, is the maximum.



WEAK CONVERGENCE OF MEASURES: APPLICATIONS IN PROBABILITY 17

THEOREM 6.1. Suppose u,, - -- , u, are nonnegative numbers such that
1 2 _
(6.7) P{my 2 i} £ Zu,), 0Ligj<kZn,
it i<lgk

fJor i > 0. Then

(6.8) P{L, >A}<—( Py )2

for 1 > 0, where K is a universal constant.

The exponent 4 in (6.7) can be replaced by any « 2 0 and the exponent 2 can
be replaced by any f > 1, provided the corresponding replacements are made in
(6.8); K then depends on x and f but on nothing else. The proof in this more
general case differs from the proof below only notationally.

As a first illustration of Theorem 6.1, consider independent &; with E{£;} = 0
and E{£}} = ¢*. Since the two quantities in the minimum in (6.2) are independent,
it follows by Chebyshev’s inequality that

P{my 2 i} = P(IS; - S| 2 2}P{IS, - 5] 2 4}
<G =0 (k= o _ (k — Pt

the last inequality being a case of xy < (x + y)*. Thus (6.7) holds with u, = ¢2.

The proof of Theorem 6.1 becomes simpler if we first generalize the result.
Let T be a Borel subset of [0, 1] and suppose n = {#,:t € T} is a stochastic process
with time running through 7. We shall suppose that the paths of the process are
right-continuous in the sense that if points s in T converge from the right to a
point ¢t in T, then 5, — n, at all sample points (if T is finite, this imposes no restric-
tion). Let

(69) My = mln{l"s - nr,’,r’t - ”.J}’
and define
L(n) = sup{m,,:r s < t,r,5,teT}.
THEOREM 6.2. Suppose p is a finite measure on T such that

{(6.10) P{im,, = A} < )i HT A~ (r, 1}, r<s<t,

Jor 2> 0and r s, tin T. Then
. K,
(6.11) P{L(n) = 1} < Jak (T)

Jor i > 0, where K is a universal constant.

To deduce Theorem 6.1 from Theorem 6.2, we need only take T={i/n:0 < i < n}
and n(i/n) = 5;,0 £ i < n, and let u have mass u; at i/n, 1 <i < n. We prove
Theorem 6.2 by considering a succession of cases.
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Case 1. Suppose first that T = [0, 1] and that g is Lebesgue measure. For
positive 8,, 8,, - - -, consider the event (we write m(r, s, t) for m,)

o ZUUf i1 41
(612) kPI =nl {m(_ZT—,—Z—E’T) < ABk}

By (6.10), the complimentarity event has probability at most

L | i—-1i+1
6.13 u?
¢ L L o { > ) <3 L
We next show that, on the event (6.12), the inequality
a b c k
(614) m(?, ?, ?‘) <2 j;l /16,

holds for all integers k, a, b, c with0 £ a<b<c<2~ Ifk=1,thena=0,
b = 1,c = 2 is the only possibility, and (6.14) holds because the sample point is
in (6.12). Suppose as induction hypothesis that (6.14) holds when k is replaced
by k — 1. If, for example, a = 24 and b = 2b" are even and ¢ = 2¢' + | is odd,
then

a b c 2" 2+ 1 2¢" + 2
"’(?’?’?) =M ’"(2——7”2—)

where M is the maximum of the two quantities

a b a & +1
m "2‘E——1*277I’51¢_—T » M k=17 k=10 9k=1)°
so that (6.14) in this case follows by the induction hypothesis and the assumption
that the sample point is in (6.12). Clearly the other possibilities for the parities of

a, b, and ¢ can be handled the same way.
Thus (6.14) holds in general; since the process {#,} has right-continuous paths,

Ly £2 3 4
j=1
follows for sample points in (6.12). If we choose the 8, so the right side of this
inequality is A at most, then P{L{n) = A} has probability at most (6.13). If §;
= C/2/'® with C chosen to make the 6, add to 1/2, we get
4 » C* K
Pl 2l S ) =@
which disposes of Case 1.
Case 2. Suppose T = [0, 1] and u is atomless—that is, F(t) = u(0,t] is con-
tinuous. If F is strictly increasing and F(1) = w, define

{) = wt2p(F ~Hew)), 0=sr=z1.
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Then the process {{(t)} comes under Case 1 and the theorem holds for {y(t)}
because L(yy) = w'2L({). If F(t) is continuous but not strictly increasing, consider
first the measure having distribution function F(t) + et, and then let ¢ go to 0.

Case 3. Suppose that T is finite (which actually suffices for Theorem 6.1).
There is no loss of generality in assuming T contains 0 and 1, so suppose T consists
of the points

O=t, <t < - <tu=1.

Let n' = {n'(t):0 < t < 1} be a process defined by
, ey if <, 05i<w,
()Z{q(n ifor=1.

If m,,, denotes (6.9) for the process 1, then m;, vanishes unless r, s, and ¢ lic in
different subintervals {t,, t;, ;). Suppose

(6.15) GSTr <l SLES< SHESE< by,
Then
myg, = m(£i9tj9zk)

and hence, by the hypothesis of the theorem for the process #,
1
(6.16) Pim, 2 4} S {1 td 0 T).

Now let v be the measure that corresponds to a uniform distribution of mass
uit,_ b + u{t;} over the interval {t,_,,,},1 £ I £ w. Then

e O T S vl 0] S W, 1,
50 (6.16) implies
1
i
Although (6.15) requires t < 1, (6.17) follows for t = 1 by a small modification of

this argument.
Thus (6.17) holds for 0 £ r < s <t < 1, and Case 2 applies to the process n':

(6.17) P{m, 2 4} < —v(r, 1.

K
PLIT) Z 4} £ 330, 1] S 32 QT

Since L(x') = L(n), if we replace the K that works in Cases | and 2 by 4K, then
the new K works in Cases 1, 2, and 3.
Case 4. For the general T and y, consider finite sets

0SSt <ty <. <t, 1

that become dense in T, and let p, have mass p{{t,;_,,t,;] © T} at the point t,,.
If " is the process  with the time set cut back to T,, then L(n"™) — L{n) by right-
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continuity of the paths. Since each 7' is easily seen to come under Case 3, the
general result follows by a passage to the limit.

7. Tightness. We can now combine the results of the preceding two sections
to establish the tightness of the distributions of the random functions
nt — [nt]

1
(7.1) X (t, 0) = —=S,,(0) + ———&141(®)
= T T
considered earlier.

Suppose that {&,, &,, -} is a stationary process with

(1.2) E{&} =0, E{&} = a3,

and assume

(13) J=2 3 [E{EE ) < .
k=1

Put §, =&, + -+ + &,
Ifry = E{flé1+k}, then

E{S?} = na? + 2:22 (n — Ky,
and therefore
(7.4) %E{Sf} e
If R, =%  r,then

i=1

1 2n—l
—-E{8$2} =g + - Ry,
n { n} 00+nk§l k

and so

(7.5) %E{s?,} - a2,

where

(1.6) o= a2 +2 i E(E,8, -

We shall assume that (7.6) is positive, and we shall define the random function
X, by (7.1) with this value of o.

We shall make one further assumption. Let %% be the o-field generated by the
random variables £,, ---, &, and let &, , be the g-field generated by the random
variables ., &, ,, --- . We shall assume the existance of a finite B such that

(7.7) P(4,n A,) S BP(A,)P(4,), A,e #], A& BL .,
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for all &, or, what is the same,
{P(AzlAl) < BP(4,),

(7.8)
P(4,l4,) = BP(4,),

A e B, A, e BE. .
This is one way of requiring that the past and future do not unduly influence
each other.

Of course (7.7) holds with B = 1 in the case of independent ¢,. If {n,} is a
stationary Markov chain whose stationary and transition probabilities satisfy

7.9) B = supﬁ < oc,

i P
and if £, = ¢fn,), where ¢ is a numerical function on the state space, then (7.7)
holds with (7.9) for B.

THEOREM 7.1. Suppose that {.} is stationary and satisfies (7.2), that the J in
(7.3) is finite and the o in (7.6) is positive, and that (1.7) holds; then the distributions
of the random functions (1.1) are tight.

Proof. By Theorem 5.4, it suffices to show that, for each ¢ there exists a 4 > 1
such that

(7.10) P{M, 2 do/n} < %

for all sufficiently large n, where M, is given by (6.1).
With the definition (6.2}, we obtain by successively applying (7.7), stationarity,
Chebyshev’s inequality, and (7.4),

P{mijk Z A s BP{|S;'—J = ;‘}P{‘Sk-ﬁ 2 A}
(j — ok + J) (k — )l + J) - iy
2 B

k
2 é KO( 4 Ll
A A A

<B

with K, = B(e3 + J)*. By Theorem 6.1 with u, = K{/?,
KOan'

= /14

(7.11) P{L, = 4}
By stationarity,

Plmaxc) 2 ) S PGl 2 A} S 55 [ dtap
ksn A7 a1z a

Those two inequalities and (6.6) give

PiM, 2 41) < KoK %f & dP.
A A ¥
{IGz A

Replacing 44 here by Ao, /n leads to
4*K,K 42

PIM, 2 io/n} < + —f &2 dP.
= = - 22 1
" gt 0" A" Jyai 2 2014y
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For sufficiently large 1, the right side here is less than &/42, so that (7.10) holds for
all n, which proves the theorem.

Suppose for the rest of this section, that the £, are independent and identically
distributed random variables satisfying (7.2} with ¢ > 0. Then the hypotheses
of Theorem 7.1 are satisfied (the J in (7.3) vanishes) and ¢ = g,. Thus the distribu-
tions of the X, are tight. Furthermore, the central limit theorem holds in this

case:

1
{7.12) —=S, =N,
o/n
where N is a normally distributed random variable with mean 0 and variance 1.
Fix t,0 < t £ 1. If k,, is determined by k, n™' <t < (k, + D)n"!, then by (7.1)
and stationarity,

(1.13) PUX,{0) — —8,] = &) = P{I&,] 2 cay/n) —0.
NE

Since k,/n — t,(7.12) implies S, »/a\/; = \/EN , and it follows (Theorem 3.1) that
X,(6) = /IN.

If s < t, determine j, by j,n ™' £ s < (j, + )n™*;if N, and N, are independent
and each is normally distributed with mean 0 and variance 1, then

S. S, — S, S; Sk, — S
p < x, K, in < }:P{ in_ < }P{ n JHS }
{aﬁ_x a\/;l =Yy g\/;l_x \/’
—»P{\/S_Nx éx}P\/[—_—sNzéy
=P{/sN, £ x,/t — sN, £ y}.

Thus

S ) = (/5N /t = sNy),

and it follows by Corollary 3 to Theorem 3.3 (consider the map (x, y) = (x, x + y)
of R? into itself) that

jn Skn

= (/SN {, /SN, + /t — sN,).
e i T
And now from (7.13) and the analogous relation for the point s, it follows (Theorem

3.1 again) that
(X(5), X,(0) = (/5N 1, /5N, + /T = sN3)

To put it another way,

(X 8), X(1) = X,(8) = (/SN , /T — sN).
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By a simple generalization of this argument, it follows that, if t, < t, < --- < ¢,
then

(7.14) (X(ts), Xlty) — X(t1), -+ Xolte) = Xolti—1))

=>(\/[:Nn\/fz ~ 4Ny, — o N,

where N, ---, N, are independent, normally distributed random variables with
mean 0 and variance 1. If ¥, = \/t, —t,_;N;forizZ2and Y, = \/}:Nl, then
(7.14) is the same as

(Xn(tl)""s Xn([k)):(yh Yl + YZ""3 Yl + oo+ n)'

The distributions P, of the X, are tight and hence some subsequence of them
converges (Prokhorov’s theorem) to some probability measure P on C. Let W be
a random function with distribution P (Theorem 3.2). Now (W(z,), W(t,)
— Wit,), -, W(t) — W(t,_,) has the distribution of the limiting vector in
(7.14). We have thus constructed a random function, a random element of C,
whose increments W(t) — W(s) are normally distributed with mean 0 and variance
t — s—and the increments over nonoverlapping intervals are independent.
Since this is a specification of the finite-dimensional distributions of the random
function W, its distribution is unique. We call W Brownian motion.

Having constructed P and W from a subsequence, we return to a consideration
of the whole sequence {F,}. By (7.14), the finite-dimensional distributions of the
P, convergence to those of P; since {P,} is tight, Theorem 5.1 implies P, = P.
In other words,

(7.15) X, =W

if X, is defined by (7.1) and the &, are independent and identically distributed with
mean 0 and positive variance ¢°.

8. Limit theorems. We have shown that (7.15) holds in the independent case,
and in this section we shall show that it holds more generally under the hypotheses
of Theorem 7.1 together with a mixing condition. We start with a characterization
of Brownian motion W. _

THEOREM 8.1. Suppose Y is a random element of C having independent increments
and satisfying E{Y(t)} = 0 and E{Y?(t)} = t. Then Y is distributed as W.

Proof. We shall show that Y{t + &) — Y{) is normally distributed with mean 0
and variance 8, which will complete the identification of the finite-dimensional
distributions of Y as those of W—which is enough.

Now for each n,

(8.1) Yt + 6)— Y(t) = Z [Y(i + 20) - Y(r L5 15)].
1

k= n
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The summands here are independent and each one has mean 0 and variance 6/n.
We shall show that Lyapounov’s condition
3

X k-1

82) S E { 4 5)
k=1 R

holds (note that the total variance is 8), so the sum in (8.1) is asymptotically normal

and hence Y(t + 8) — Y(t) is normal. Clearly (8.2) will follow if we prove that

(8.3 E{|Y(s + h) — Y(s)°} < K07,

where K, is independent of s and h.
To prove (8.3), fix s and /h for the moment and define

e o) - v
n

. :
éizY(s+%h)—Y(s+L;—h), i=1,---,n.
IS, =& + .- + &, then

Y(s + h) - Y(s5) =§,.

Because of the independence of the increments of Y, it follows by Chebyshev’s
inequality and the moment conditions that, in the notation (6.2),

SR

v{j, i\ L[k j 1 A? "
< JIn_Zhpt 2t < D —
= 2( h nh) /lz(nh nh) =4t nz(k i

P{m; =i} = P{]Y(s+£h) - Y(s +,—ih)

Therefore, by Theorem 6.1,

P{L,z i} < %hz,
with L, defined by (6.3). By (6.6) and the fact that |Y(s + h) — Y(s} =|SJ £ M
we have

P{Y(s + h) — Y(s) = 44}

K | : Y
<k 4+ P{max Y(s + ih) - Y(s 4! lh)l = &}.
i n n

isn

ns

Now Y(t) is continuous in t, and hence the last term here goes to 0 as n — co.
Therefore (replace 44 by 1),

4*K
P{Y(s + h) - Y(s) 2 A} = 7h2-
If F(x) is the distribution function of | Y(s + h) — Y{(s)|?, then

4*Kh?

x4/3 *

I —Flx) =
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Integration by parts gives
b b
J. xdF(x) = a(l — F(a)) +J (1 — F(x))dx — b(l1 — F(b)),

so that

(8.4) f " Y dF(x) = a(l — Fla) + f (1 = Fx)dx.

Therefore,

- 44Kh2
T

E{|Y(s + h)— Y(s)’} £ a +j dx;

taking a = h¥? gives (8.3) with K, = 1 + 3-4*K.
We next cast Theorem 8.1 in asymptotic form. We say a sequence { Y} of random
functions has asymptotically independent increments if the difference

k k
|t - s | - T P - v 5 3)
i=1 i=1
goes to 0 for disjoint intervals [s;,t].

THEOREM 8.2. Suppose that {Y,} has asymptotically independent increments,
that {YX(t):n = 1,2, -} is uniformly integrable for each t, and that E{Y,{t)} - 0
and E{YX(t)} >t as n— o for each t; suppose finally that the distributions of
the Y, are tight. Then Y, = W.

Proof. By Theorem 2.2, it is enough to show that if some subsequence of {¥,}
converges in distribution to some Y, then Y is distributed as W. But the finite-
dimensional distributions of such a Y are the limits of those of the subsequence,
so Y has independent increments. Now { Y2(z):n = 1,2, - - -} is assumed uniformly
integrable, and it follows that {Y,(t):n = 1,2, ---} is also uniformly integrable;
by Corollary 5 to Theorem 3.3, we can integrate to the limit along the subsequence:
E{Y()} = lim E{Y,(1)} = 0 and E{Y*@)} = lim E{Y2(:)} = ¢. That Y is dis-
tributed as W now follows by the preceding theorem.

We turn finally to the problem of proving convergence in distribution for the
random functions defined by

(8.5) X,1) = — 5y +

O‘ﬁ O'\/; é[m]’rl'

Here S, =&, + --- + &, and the £, satisfy the conditions of Theorem 7.1.
That is, {£,} is stationary,

(8.6) E{¢) =0, E{&} =23

we have

@) > IBEdy )l < o0
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and

(8.8) ot =05 +2 3 E{&&..) > 0;

n=1
if #7 and BF are respectively the o-fields generated by the families {&:k < n}
and {&,:k = n}, then

(8.9) P(4,n A,) £ BP(4,)P(4;), A,e #], A,e B,
where B is a finite constant independent of n. We shall also assume that
(8.10) [P(A; N Ay) ~ P(A)PA,) S a,, Ay e B, Are BE,,

for all k and n, where

(8.11) lim a, = 0.
This is a mixing condition which ensures that the distant future is virtually
independent of the past.

THECREM 8.3. Suppose that {&,, &y, --+} is stationary and satisfies (8.6) through
(8.9); suppose also that (8.10) holds for some sequence satisfying (8.11). Then X,
defined by (8.5), converges in distribution to W.

Proof. We shall show that the X, satisfy the hypotheses imposed on the Y,
in Theorem 8.2. We showed in Theorem 7.1 that the distributions of the X, are
tight ; certainly E{X (1)} = 0, and E{X (¢)} — ¢ follows from (7.5).

From (8.10) it follows by induction that, if 4; is in the o-field generated by
{Capr 2 &} i=1,--+, k, and if a; — b;_, > I, then

(8.12) IPA; n--- nA) — P(A)) -+ P(AN £ k.

The increment X ,(z;) — X ,(s;) is measurable with respect to the o-field generated
by Ciusgs =+ Spuegy+r @and [ns] — [nt;_ ] — 1 - w0 if t;,_; < s;, so the asymptotic
independence of the increments is a consequence of (8.11) and (8.12).

It remains only to prove the uniform integrability of {XX(t):n = 1,2, ---}.
By the definition (8.5) (recall (x + y)* < 2x? + 2y?),

2 2

2 2 2
X"(l‘) s Tns[m] + 0'_2—)—1-6{'"]-‘- 1-

The second term on the right is certainly integrable uniformly in », and so it will
suffice to prove {S?/n:n = 1,2, ---} uniformly integrable. In the notation of § 6,

IS, = M, < 3L, + max|{/,
kEn
and hence

§2 < 18L% + 2max &,

k<n
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and so it suffices to prove separately the uniform integrability of L2/n and of

(8.13) m, = max & /n.
k<n

In the course of proving Theorem 7.1 we established (7.11), which gives

K
P{Linz x} < ;’2 .

By (8.4) with the distribution function of LZ/n for F,

® K
f lLf dP < aK:ZK +f K;’ZK dx = 2 OK,
{ e

Linza} n a

which proves the uniform integrability of L?/n.

To prove the uniform integrability of (8.13) we need a lemma.

LEMMA. If £ and n are nonnegative random variables and & is measurable %
and n is measurable %y, |, then

(8.14) E{¢n} < BE{S}E{n}.
Indeed, by the basic assumption (8.9), if ¢ = Z,- aly, and n = Zjﬂjl v, are
simple functions, then
E{{n} = Z“iﬁjp(ui nV)
ij
= BZ aiﬁjP(Ui)P(Vj) =BE{¢} E{n},
i

and (8.14) for the general case follows by a passage to the limit.
By an application of this lemma, (8.13) satisfies

f mdP < Y Yeagp
imn2za)

ik=1Jezzam 1t

sT[ g

i=1 J(2zam

o
Y BP{¢ 2z an} E{—c’f} X
i<k h

=n

WA

By stationarity,
B
f m,,dng‘ &2dP + —E* ¢},
(o2 ) @iza a

whence follows the uniform integrability of the m,. This completes the proof of
Theorem 8.3.

For a very simple application, consider a finite Markov chain {#,} with positive
transition probabilities p;; and stationary probabilities p;, and suppose &, = ¢(n,).
where ¢ is a real function on the state space. Then (8.9) holds with B = max;; p;;/
p;. Moreover, the nth-order transition probability p{? converges to p; at an
exponential rate:

Py — p; = O(p"), 0<p<l.

ij
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Hence (8.10) holds with «, = O(p").
If
(8.19) E{¢.} = X pioli) = 0,
then
E{8psa) = ZPin‘?‘P(i)QDU)

= 2 () — pipJel)el))

goes to zero exponentially, so that (8.7) holds. Thus Theorem 8.3 applies if (8.15)
holds and if
(8.16) o = Y pp*() + 2 3, ¥ pplPolel)
i n=1 ij
is positive.

Notice that Theorem 8.3 contains the central limit theorem for the process
{&.} but does not presuppose it. If f maps C continuously into R, it follows by
Corollary 3 to Theorem 3.3 that f(X,)= f(W). If f(x) = x(1), then f(X,)
= S,/o\/; and f(W) is normal with mean 0 and variance 1, so that

S

o/ h

= W(1)

is the central limit theorem. On the other hand, the distribution of f(W)is known
for a variety of other functions f on C, and each of these leads to a limit theorem

for {&,}.
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