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Preface

The pages that follow are a record of ten lectures I gave during September of
1970 at a Regional Conference in the Mathematical Sciences at Iowa City,
sponsored by the Conference Board of the Mathematical Sciences and the
University of Iowa with support from the National Science Foundation.

The lectures cover a subset of the material in my book, Convergence of Probability
Measures, proceeding in a direct path (at a pace brisker than that of the book)
from the beginnings of the subject to its applications in limit theory for dependent
random variables.

The present treatment departs from the book in many particulars. For example,
the mapping theorems are here proved via Skorokhod's representation theorem,
Prokhorov's theorem is proved by construction of a content, and the maximal
inequality of § 6 is given a proof devised by Michael Wichura. Most important,
the limit theorems at the end are proved under a new set of conditions which
apply fairly broadly (not quite so broadly as the ones in my book) but at the same
time make possible relatively simple proofs. There is a bibliography of recent
papers.

Prerequisite for reading this account are the basic parts of metric-space topology
and measure-theoretic probability, and one result of functional analysis, the
Arzela-Ascoli theorem.

Thanks are due those who attended the conference for sharp cross-examina-
tion and interesting commentary. Special thanks are due Robert V. Hogg, who
organized the conference, and John D. Cryer, who took an excellent set of notes.

Chicago PATRICK BILLINGSLEY

May 1971
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Weak Convergence of Measures:
Applications in Probability
Patrick Billingsley

for all CD.
Thus the finite-dimensional distributions of a stochastic process by no means

determine the distribution of every function of the process. In order to derive the
distribution of a given function of a process one may require, beyond a specification
of the finite-dimensional distributions, some kind of regularity condition that in
effect involves all time points simultaneously (separability of the process is such a
condition).

Something analogous arises in connection with limit theorems. Suppose
X,(u>) — 0, as before, and suppose

1. Introduction. Let Q be the unit interval [0, 1], let & consist of the Borel sets
in [0, 1], and let P denote Lebesgue measure on 3$, so that (Q, 3$, P) is a prob-
ability space. Define

for 0 g t g 1 and co E fi, and define

for f and o> in the same ranges. Then P{X, = 0} = P{ Y, = 0} = 1, so that the
stochastic processes [X,:0 :£ r g 1} and [Y,:0 ^t ^ 1} have the same finite-
dimensional distributions, in the sense that

for all choices of the i, and KJ. On the other hand,
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PATRICK BILLINGSLEY

In other words, for each oo, X(,"\(D) is, as a function of t, the function with graph
shown in Fig. 1.

(This is the advanced-calculus example of a sequence point wise but not uniformly
convergent; that it involves no real randomness makes it simple but not irrelevant.)

Thus the convergence of the finite-dimensional distributions does not imply the
convergence of the distribution of every function of the processes. In order to
derive the limiting distribution of a given function of the processes one may require,
beyond convergence of the finite-dimensional distributions, some convergence
condition that in effect involves all time points simultaneously. The theory of
weak convergence of probability measures on metric spaces provides such
conditions. When applied in appropriate spaces of functions, the theory gives a
powerful way of treating convergence problems that go beyond finite-dimensional
cases, problems that arise in a natural way in applications.

2. Weak convergence. Let S be a metric space. We shall assume throughout
all that follows, without further mention of the fact, that 5 is both separable
and complete. The interior and closure of a set A we denote A° and A ~ respec-
tively, and its boundary A ~ — A° we denote dA. The distance between points is
p(x, y), and the distance from x to a set A is

2

p(x, A) is continuous in x. The ^-neighborhood of a set A is

for all choices of the t; and Xj. In other words, the finite-dimensional distributions
of the process [X™:Q g t g, 1} converge to those of {X,:Q ^ t <> 1}. Nonetheless,

For each positive t, Xl"\(a) = 0 if t > 2/n, and hence

FIG. 1
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The class of bounded, continuous real-valued functions on S we denote C(S).
The open sets in S generate a a-field denoted y; the elements of y are called

Borel sets. We work with Borel sets exclusively: each set introduced is assumed to
be a Borel set, and each set constructed during the course of a proof can be shown,
by an argument ordinarily omitted, to be a Borel set. Similarly, all functions are
measurable with respect to y.

We shall be concerned with nonnegative, completely additive set functions P
on y satisfying P(S) = 1—that is, with probability measures. If Pn and P are
probability measures (on (S, ,9")), we say ?„ converges weakly to P, and write
Pn => P, if

for all functions / in C(S). (We omit the region of integration if it is the entire
space.)

A set whose boundary satisfies P(dA) = 0 is called a P-continuity set. The
definition of weak convergence is framed in terms of the convergence of integrals
of functions. The following basic theorem characterizes it in terms of the con-
vergence of measures of sets.

THEOREM 2.1. These four conditions are equivalent:
(a) Pn => P,
(b) lira supn PH(F) £ P(F) for all closed F,
(c) lira infB PJG) £ P(G) for all open G,
(d) limn Pa(A) = P(A) for all P-contimiity sets A.
Proof. We first show that (a) implies (b). Suppose (a) holds and suppose F is

closed. Given a positive e, choose a positive 5 such that (see the definition (2.1))

which is possible because FA [ F as 5 I 0, F being closed. Now let

and define

Since / is nonnegative and assumes the value 1 on F,
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Since / vanishes outside F* and never exceeds 1,

Finally, since Pn =*• P and / is an element of C(S),

Therefore,

Since e was arbitrary, (b) follows.
A simple complementation argument proves the equivalence of (b) and (c).

Now (b) and (c) together imply (d) because they imply

and, if P(dA) = 0, the extreme terms are equal so that there is equality throughout.
The proof will be complete if we show that (d) implies (a). So we assume (d)

and prove that (2.2) holds for / in C(S). Choose a and /? so that a < f(x) < $ for
all x. Now there are only countably many y for which P{x :f(x) = y} > 0. Given
£, choose otj so that a = a0 < o^ < • • • < at = /?, a,- — a,-_j < e, and P{x:f(x)
= a,} = 0. If y is a boundary point of

then f(y) is either a;_ j or a,, so the sets (2.3) are P-continuity sets. Now

Since the sets (2.3) are P-continuity sets, it follows from the condition (d) that the
extreme terms in (14) converge respectively to the extreme terms of (2.5). The
latter differ by at most £ since a; — a;_ l < e. Hence the limits superior and inferior
of J fdPn are within £ of J fdP, and (2.2) follows because £ was arbitrary.

Suppose now that the probability measures P and Q satisfy

for all /in C(S). If Pn = Q, then Pn => Q, and from Theorem 2.1 we conclude that
Q(F) <; P(F) for all closed F. Since the roles of Q and P may be interchanged in this

and
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argument, P and Q agree for closed sets and hence also for open sets. Let *& consist
of those sets A that are F ff-sets (that is, Fn \ A for some sequence of closed sets)
and are at the same time G^-sets (that is, G n J, A for some sequence of open sets).
A closed set F is of course an F a and is a Gs because it is the limit of the open
sets F1/n. Thus & contains the closed sets and similarly the open sets, and it is not
hard to show that ^ is a finitely-additive field, which of course generates the
(j-field y. If P and Q agree for open sets and closed sets, they certainly must agree
for sets in ^ and hence for all sets in ,V. Thus (2.6) implies P and Q are identical.

If P n => P and Pn => Q, then (2.6) must hold, so P and Q are the same. Thus there
can be at most one weak limit.

It is possible to metrize the space of probability measures on S in such a way
that it becomes a separable complete metric space and convergence in the metric
is equivalent to weak convergence. We shall never use this fact; we shall instead
continue to work directly with the notion of convergence: Pa => P.

THEOREM 2.2. // each sequence [Pnt] of {Pn} contains a further subsequence
{PBjrJ such that Pn.m => P as m -+ co, then Pn => P as n -> oo.

Proof. If P n does not converge weakly to P, then (2.2) fails for some / in C(S),
so that

for some positive £ and all Pn. in some subsequence. But then no subsequence of
{PnJ can converge weakly to P.

The classical case of weak convergence concerns the real line Rl with the
ordinary metric and probability measures on the class^1 of Borel sets on the
line. Such a probability measure P is completely determined by its distribution
function F, defined by

Suppose {Pn} is a sequence of probability measures on (Rl,3tl) with distribution
functions Fn.

THEOREM 2.3. // Pn =*• P, then Fn(x) -+ F(x) at all continuity points x of F, and
conversely.

Proof. If x is a continuity point of F, then (—oo,x] , whose boundary is }x},
is a P-continuity set, so that Fn(x) = Pn(— oo, x] -* F(x) = P(— oo, x].

Suppose on the other hand there is convergence of the distributions functions
at continuity points of the limit. Given e, choose continuity points a and b of F so
that a < b, F(a) < e, and F(b) > 1 — e. And given an/in C(Rl), choose continuity
points x, of F such that a = x0 < xt < • • • < xk = b and |/(x) - /(x;)| < £ for 
X j _ j g x s; x,. Let S be the Riemann sum £*=,/(x,.)[F(x;) ~ ^(x;-i)] a°d let
Sn be this sum with Fn replacing F. Let M be an upper bound for |/(x)|. By hypo-
thesis, Sn -» S, and since
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the limits superior and inferior of//</?„ are within (4M + 2)e of $fdP, which
completes the proof since s was arbitrary.

A probability measure on the class !%k of Borel sets in /c-dimensional Euclidean
space /?* is determined by its distribution function

The analogue to Theorem 2.3 holds and can be proved by a consideration of
fc-dimensional Riemann sums.

3. Random elements and convergence in distribution. Let 5 be a metric space
as before, and let (ft, ^, P) be a probability measure space. A mapping X: Q -> S
is called a random element of S if it is measurable in the sense that {cu: X(w) e A]
— X~lAe 3S for each At.91. Special cases are random variables (S = Rl) and
random vectors (S — Rk). The distribution of X is the measure P = PX ~l on &:

P(A) = PX~\A) = P{co:X(o))eA} = P{X<=A},

Suppose in addition to X we have a sequence of random elements X n of S,
defined on spaces (Q B, &„, Pn), with distributions Pn = PnX~l. If Pn => P we say
Xn converges in distribution to X and write Xn => X. Every result about weak
convergence has an anologue about convergence in distribution, and vice versa,
and to pass from the one to the other requires not a proof, but merely a translation.
For example, by Theorem 2.1, XH => X if and only if lim supn Pn{ Xn e F} g P{ X e F}
for all closed sets F.

Suppose X H and 1^, are both random elements of S defined on Qn. We shall drop
the subscript n from Pn.

THEOREM 3.1. If Xn=> X and the distance p(Xn, Yn) converges to 0 in probability,
then Yn^>X.

Proof. Clearly P{Y neF} g P{Xne(F*)~} + P{p(Xn, Yn) ^ d}. The second
term here goes to 0 since o(Xn, Yn) converges in probability to 0, and since Xn => X,
we have

Since (Fdr I F as d 10 if F is closed, the result follows.
Let us use the term Lebesgue interval to refer to the probability measure space

(Q, ̂ , P), where Q is the unit interval, ^ is the er-field of Borel sets in Q and P
is Lebesgue measure on 3$.

THEOREM 3.2. For each probability measure P on (S, y}, there is a random element
of S, defined on the Lebesgue interval, with distribution P.

6

and
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Proof. For each k, construct a decomposition jj/t = {Akl,Ak2, •••} of S into
disjoint sets of diameter less than 1/fc, and arrange that s/k + l refines stfk. And
construct a decomposition Jk — {Ikl ,Ikl,--} of the unit interval into subintervals
whose lengths satisfy |/J = P(Aku), and arrange that ,/k+1 refines ,/*. Finally,
arrange the indexing so that Aku => Ak + l „ if and only if Iku 3 Ik+i,v- The con-
struction can be carried out inductively because, if / j , / 2 , ••• are nonnegative
numbers adding to the length of an interval, that interval can be split into sub-
intervals of lengths l i , /2, • • - .

Let xto be some point in Aku, and define a random element Xk by

Since [Xk(co), Xk + j fw) , • • •} is contained in some one element of s#k, its diameter
is at most 1/fe; thus {Xk((o)} is a Cauchy sequence for each a>, the limit X(a>)
= \imk Xk(co) exists, and this limit satisfies

If a prime denotes a sum or union extended over those u for which Aku meets a
given set F, then

If F is closed, it follows that

Thus the distribution of Xk converges to P, and hence, by (3.2) and Theorem 3.1
(with Y k = AT), X has distribution P.

We turn now to the Skorokhod representation theorem, an extension of
Theorem 3.2. In addition to P, consider a sequence {Pn} of probability measures
on S.

THEOREM 3.3. If P n => P, then there exist on the Lebesgue interval random elements
Xn and X which have respective distributions Pn and P and satisfy limn Xn(u>) = X(u>)
for each oj.

Proof. Construct the decompositions jafk of the preceding proof, but this time
require that each Aku be a P-continuity set. (Since d{y:p(x,y) < 6} cr {y:p(x,y)
= S}, the spheres about x are P-continuity sets except for countably many radii,
so S can be covered by countably many P-continuity sets of diameter less than l/k.
The usual procedure for rendering the sets disjoint preserves P-continuity because
d(Ar,B)c(dA)v(dB).)

Consider the decompositions Jk as before, and, for each n, construct successively
finer partitions J[n> = {1$, /$, • • •} with f/j^ = P tt(Atu). Inductively arrange the
indexing so that (here / < J for intervals means the right endpoint of / does not
exceed the left endpoint of J) /jfj < /{J if and only if I ku < Ikv. In other words,
ensure that for each k the families Jk, <?(k\ J(k}, • • • are ordered similarly.
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Define Xk by (3.1), as before, where xku e Aku, and define

Again Xk(u}) converges to an X((o) satisfying (3.2), and X{"\a>) converges (k -> oo)
to an X(n)(co) satisfying

And again X has distribution P and X(n} has distribution Pn.
Since £„ [P(A ku) - Pn(AkJ] = 0, we have

where the next-to-last sum extends over those u for which the summand is positive.
Each summand goes to 0 as n -+ oo because the Aku are P-continuity sets, and it
follows by dominated convergence that

Fix k and «c, let a and an be the left endpoints of lkaa and /j^ respectively, and
let £' indicate summation over the set of u for which lku < lkun (which is the same
as the set for which /£> < /!#,). Then (3.4) implies

Similarly the right endpoint of /{."j converges as n -» oo to the right endpoint of
/*„.

Hence, if co is interior to Iku, then co lies in 1$ for all sufficiently large n, so that,
by (3.2) and (3.3),

Thus, if (a is not an endpoint of any I ku, then, for each fe, (3.5) holds for all
sufficiently large «. In other words, lim n X("\(o) = X(ca) if co is not in the set of
endpoints of the Iku. This last set, being countable, has Lebesgue measure 0,
so that, if X(n\a)) is redefined as X(u}) on this set, X(n} still has distribution Pn,
and there is now convergence for all co. This proves the theorem (with X(n) for
*„).

The theorem can be restated: Consider random elements X and Xn of S;
they may all be defined on different probability spaces.

COROLLARY 1. // X n => X, then there exist on the Lebesgue interval random
elements Yn and Y which have the distributions of Xn and X respectively and which
satisfy limn Yn(ca) = Y(co)for all o>.
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If P is a measure on S, and if/is a mapping from S to another metric space S',
measurable in the sense that/"'/I e Sf if /I is in the tr-field &" of Borel sets in S',
then P/"1 is the probability measure on .9" defined by Pf~l(A) = P ( f ~ 1 A ) .
Suppose, in addition, we have a sequence of measures Pn. Let Df be the set of
discontinuities of/and assume it lies in y.

COROLLARY 2. // Pn => P and P{Df) = 0, then Pnf~l=>Pf~l.
Proof. Consider the random elements of Theorem 3.3. Now limn Xn(o}) = X((a)

for each w, and if/is continuous at A'(co), which by hypothesis holds except on an
co-set of Lebesgue measure 0, then

Thus (3.6) holds for almost all o>, and, since f(X n) and f(X) have respective
distributions PJ~l and P f ~ ' , it follows that PJ"' => P/~'.

COROLLARY 3. // Xn => X and P{X e Df} = 0, then f(Xn) =>f(X).
This corollary is a direct translation of Corollary 2. It can also be deduced

from Corollary 1.
COROLLARY 4. // random variables Xn and X satisfy Xn => X, then

COROLLARY 5. // ratidom variables Xn and X satisfy Xn => X, and if the Xn are
uniformly integrable in the sense that

then X is integrable and

To prove Corollary 4, consider the random variables Ya and Y guaranteed by
Corollary 1. Fatou's lemma implies E{|y|} g lim supn E{|Y^|}, and (3.7) follows
because yn and Y have the distributions of Xn and X. (The E in (3.7) denotes
expected value with respect to whatever probability measure governs the random
variable in question.) Corollary 5 similarly reduces to a standard fact of integration
theory.

Theorem 3.3 can be used to give simple proofs of many results in statistics,
for example, those connected with the ^-method.

4. Prokhorov's theorem. A family II of probability measures on S is said to be
relatively compact if each sequence {Pn] of elements of n contains some subsequence
{/*„.} converging weakly to some probability measure P. The limit P is not required
to lie in FT, but of course it must be a probability measure on S.

It is possible to metrize the space of probability measures on S (see the remarks
preceding Theorem 2.2), and n is relatively compact if and only if it has compact
closure in this metric. It is not necessary to go into this matter, however, because
the definition above makes good sense as it stands.
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The following theorem, due to Prokhorov, is basic to the application of weak
convergence in probability theory. The family II is said to be tight if, for each
positive e, there is a compact set K c for which P(KC) > 1 - £ for every P in n.

THEOREM 4.1. The family O is relatively compact if and only if it is tight.
Proof. Suppose that FI is tight. There is a sequence {£„} of compact sets such

that KI c K 2 c • • • and P(Ka) > 1 - 1/w for all u. Let st be a countable collection
of open spheres forming a base for the topology of S, and let 3? consist of the finite
unions of sets of the form A ~ n K u with u g 1 and A an element of stf. Then 3P
is countable and is closed under the formation of finite unions, and each set in
3( is compact.

Given a sequence {Pn} in I~I, select by the diagonal procedure a subsequence
{Pni} along which limits

exist for all H in 2C. Suppose there exists a probability measure P such that

for all open sets G. Then Pnt => P as i -> oo because, if H <= G, x(H) = lim, Pn.(H)
g lim inf, Pai(G), whence P(G) ^ lim inf; PM,(G) follows via (4.2), proving weak
convergence. Thus it suffices to produce a P satisfying (4.2).

Clearly oc(H), defined by (4.1) for all H in Jf, has these properties:

Define

for open sets G, and then define

for arbitrary subsets M of S. Clearly y(G) = j?(G) for open G.
Now suppose we succeed in proving that y is an outer measure and that each

closed set is y-measurable (measurable with respect to y). Then all sets in y will
be y-measurable (recall the y-measurable sets form a tr-field) and the restriction
P of y to y will be a measure satisfying P(G) = y(G) = £(G), so (4.2) will hold
for open G as required, and P will be a probability measure because

We first prove that $ is finitely subadditive (on open sets): If H c G l u G2
and H e J f , define Fj = {xe/f :p(x,G\) ^ p(x, GC

2)} and F2 = (xeH:p(x,G2)
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^. p(x, G"i)} (seeTig. 2). If x e Fl and x $ G,, then x e G2, so that, since GC2 is closed,
p(x, G\) = 0 < p(x, G2), a contradiction. Thus Fi^G,; similarly F2 c G2.
Since F, is compact, being a closed subset of the compact set H, and Fj is inside
the open set Gl, it follows by the definition of Jf that Ft <r Hl c G, for some
#! in Jf; similarly F2c H2c G2 for some H2 in Jf. But then «(#) g a(#, u //2)
g «(//,) + a(tf 2) g ^GJ + /J(G2) by (4.3), (4.5), and (4.6). Since we can vary H
inside G, u G2,ft(Gl u G2) g /J(G,) + /?(G2) follows.

Un Gn, then, since
U n< n oGB for some n0, and therefore, by finite subadditivity,

Next, /? is countably subadditive (on open sets): For, if H
H is compact, H
a(/f)S^(U n S n oG n)g£ a ; n oAGJ^Z nAGn)- Taking the supremum over H
inside UB Gn "gives ft Utt Gn) g ^n /?(GJ.

And y is aw outer measure: Since 7 is clearly monotone, we need only prove it
countably subadditive. Given a positive e and arbitrary subsets Mn of S, choose
open sets Gn such that Mn c Gn and ft(Gn) < y(Mn) + £/2". Then, by the countable
subadditivity of ft y( Un MJ g j3( Un GJ g £„ j?(GJ < ^B y(MJ + £, whence,
e being arbitrary, we conclude y( Un Mn) g ^]n y(Mn).

It remains only to prove that each closed set is y-measurable. We must show that,
if F is closed and M arbitrary,

(the reverse inequality follows by the subadditivity of y). To prove (4.7) it suffices
to prove

for open G, because then G = M implies /?(G) ^ y(M n F) + y(M n Fc) and taking
the infimum over G gives (4.7).

To prove (4.8), choose, for given positive E, an H Q in Jff for which H0 <=• G n Fc
and a(# 0) > 0(G n F') - e. Now choose an H^ in tf for which H l <= G n HC0
and a(H]) > /?(G n HQ) — e. Since H0 and Ht are disjoint and are contained in
G (see Fig. 3), it follows by (4.4) that £(G) ^ «(H0 u #1) = «(#<>) + «(«,)
> j6(G n Fc) + )8(G n HC 0) - 2e ^ y(G n Fc) + y(G o F) - 2e. Since e was
arbitrary, this proves (4.8).

We turn to the converse problem of showing that a relatively compact M must
be tight. Consider a sequence A t,A2, • • • of open spheres of radius S that cover S.
For each e, there exists an n such that, if B n = U,<n A{, P(Bn) > 1 - e for all P
in n, because otherwise for each n we have P n(Bn) g 1 — e for some Pn in Fl,

FIG. 2
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and by relative compactness P B( => P0 for some subsequence {Pn.} and probability
measure P 0, which is impossible because P0(Bn) g lim inf( PBj(BJ g lira inf, Pni(Bn)
g 1 - e while Bn | S.

Thus for each positive e and 5, there are finitely many spheres Alt • • • , An of
radius 8 such that P( U^n At) > 1 — e for all P in II. Choose spheres Akl, • • • , Aknk

of radius l/k such that~P( U i g n k /lfci) > 1 - e/2*. If K is the closure of the totally
bounded set D^, U;<B|i/4H, then K is compact and P(K) > 1 - £ for all P
in n.

5. The space C. From here on we shall be concerned with the space C of
continuous functions x = x(t) on the closed unit interval, metrized by

We denote by <$ the cr-field of Borel sets in C, and we shall be concerned with
probability measures on (C, <#).

If 0 g f j < t2 < • • • < tk g 1, the mapping Jt,,...,„(*) = (*(*i)> • • • » *(**)) carries
C continuously into Rk. Sets of the form 7i~*.,kH with H an element of ̂ fc, a Borel
set in Rk (k and t t , • • • , tk arbitrary), are called finite-dimensional sets, and the
finite-dimensional sets form a finitely additive field. The closed sphere of radius r
about x is the intersection of the finite-dimensional sets {y:\y(t) — x(f)| g r}
with t ranging over the rationals; each open sphere is a countable union of closed
spheres and each open set is a countable union of open spheres and hence lies in
the a-field generated by the finite-dimensional sets. Thus the finite-dimensional
sets form a finitely additive field generating c€.

For a probability measure P on C, the various measures Prc".1.^ on the spaces
Rk are called the finite-dimensional distributions of P. If two measures have the
same finite-dimensional distributions, they agree for finite-dimensional sets, and
hence, since these sets constitute a field generating #, they are the same measure.
Thus the finite-dimensional distributions Pn^.l..tk of P uniquely determine P itself.

Suppose now that x(t) = 0 and that xn is the function given by

FIG. 3
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let P be a unit mass at x (that is, P(A) is 1 or 0 according as x lies in A or not)
and let Pn be a unit mass at xn. Now if 2/n is less than the smallest nonzero t,,
then x and xn either both lie in n^..tlH or else neither one does, so that P7t~.!.(k(//)
= Pnn~.l.tk(H). Therefore there is weak convergence Pnn~.l.,k => Pn~.l..tk in Rk

for each t,, ••• , tk. On the other hand, the set {y :|Xt)| ^ 1/2,0 ^ r ^ 1}, the
sphere of radius 1/2 about x, is a P-continuity set and Pn(A) = 1 does not converge
to P(A) = 0. Thus Pn does not converge weakly to P.

This example shows that if there is convergence of the finite-dimensional
distributions, that is, if

for all k and tl, • • •, tk, it does not follow that there is weak convergence of Pn

toP:

According to the Arzela-Ascoli theorem, a set A in C has compact closure if and
only if

and

THEOREM 5.2. A family II of probability measures on C is tight (hence relatively
compact) if and only if for each Y\ there exists an a such that

(The converse proposition of course does hold because of Corollary 2 to Theorem
3.3.) Thus weak convergence in C involves considerations going beyond finite-
dimensional ones, which is why it is useful (see the introduction).

On the other hand, (5.1) does imply (5.2) in the presence of relative compactness.
THEOREM 5.1. // (5.1) holds for all k and tl, • • • , tk, and if {Pn} is relatively

compact, then (5.2) holds.
Proof. Since {Pn} is relatively compact, each subsequence {Pn.} contains a

further subsequence {Pn,m} such that Pn.m => Q as m -> oo for some probability
measure Q on C. But then P^ rc,".1.,,, => Qn^..tll, so that, because of (5.1), Qn'1..^
= P7i~.!.,k. Thus P and Q have the same finite-dimensional distributions and,
as observed above, this implies P = Q. Thus each subsequence of {PB} contains a
further subsequence converging weakly to P, and (5.2) follows by Theorem 2.2.

Theorem 4.1 characterizes relative compactness by tightness. In order to apply
Theorem 5.1 in concrete cases, we shall in turn characterize tightness by means
of the Arzela-Ascoli theorem.

For x e C and 6 > 0, the modulus of continuity is defined by
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and for each r] and e there exists a <5 such that

Proof. Let Aa be the set in (5.5) and let Bsi(5 be the set in (5.6). If n is tight, then,
for each i\ there is a compact set K such that P(K) > 1 — rj for all P in I"!. But,
by the Arzela-Ascoli theorem (see (5.3) and (5.4)), K <=. Ac

a for large a and K c B£ 3

for small <5, so (5.5) and (5.6) hold.
On the other hand, if (5.5) and (5.6) hold and r\ is given, choose a and 6k so that

P(Aa) < n/2 and P(B4-,,J < f//2 t+ ' for all k = 1,2, • • • and all P in n. If K is the
closure of Ac

ar, n^=1BJ-iA , then P{K) > 1 - r\ for all Pell, and, by the
Arzela-Ascoli theorem, K is compact.

Since an individual measure P forms a tight set (because it forms a relatively
compact one), the inequalities in (5.5) and (5.6) hold for a single given P for large
enough a and small enough <5. As sufficient conditions for tightness, therefore, we
may relax (5.5) and (5.6) by allowing them to fail for finitely many P in fl, since
these exceptional P may be provided for by increasing a and decreasing d. Thus
Theorem 5.1 has an alternate form in case n is a sequence.

THEOREM 5.3. A sequence {Pn} of probability measures on C is tight (hence
relatively compact) if and only if for each r\ there exist a and n0 such that

where a is a positive constant.
For each w, Xn(t, (a) is, as a function of t, an element of C; at t = k/n its value is

Sk(ia)/a^/n, and it varies linearly in the intervals between such points. This element
of C we denote Xn(co); this is the value at co of a mapping from Q to C, and we
denote the mapping itself by Xn. On the other hand, if t is fixed, co -» Xn(t, w)
gives a mapping from fi to R, and we denote this mapping by Xn(t); it is, by (5.9) an
ordinary random variable on Q. If A = n,~.\H is a finite-dimensional set in
C(H €<%"), then

lies in &. Since X~ 1A e ̂  for finite-dimensional sets A, and since the latter sets
generate #, it follows that X^Ae^S for all AeW. In other words, o>-> Xn(o})
is a measurable mapping and hence Xn is a random element of C.

and for each r\ and e there exist 6 and n0 such that

The Pn we shall be concerned with arise as distributions of random elements of
C, which we call random functions, constructed in the following way. Let £, ,£21
be a sequence of random variables defined on some probability measure space
(Q, &, P), define Sfc = <!;, + • • • -f & (with S0 = 0), and for w e Q and 0 g t g 1
put
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We shall be interested in proving that the random functions Xn converge in
distribution under appropriate conditions, and this will require establishing that
their distributions are tight.

THEOREM 5.4. // the sequence {£„} is stationary, and if for each s there exists a
A, with A > 1, and an n0 such that

then the distributions on C of the random functions (5.9) form a tight sequence.
Proof. Certainly the distributions Pn of the Xn satisfy (5.7) since ATn(0, w) = 0,

and what we must verify is (5.8). For given e and q, there exist, by the hypothesis
(5.10) with e2tj/62 in place of e, a A > 1 and a d0 such that

Define d by

A > 1 and there is no loss of generality in assuming e < l , so 0 < <5 < 1. Given n,
choose an integer d so that

since d is now fixed, there is such a d for all sufficiently large n, and moreover
d ^ d0 for sufficiently large «, so that (5.11) is available. By (5.13) and (5.9),

where this maximum extends over i and j satisfying 0 ^ i gy g n, \j — i| :g d.
If

then the maximum in (5.14) is at most

and it follows by stationarity that



so (5.11) and (5.15) imply

which completes the proof.

6. A maximal inequality. In order to apply Theorem 5.4, we need an effective
way to bound the probability in (5.10). Let £:, ••- , £,„ be random variables
(stationary or not), let Sk = £, + - - • + £k(S0 = 0), and put

What we need is an upper bound for P{Mn ^ /}, and we shall derive one by an
indirect approach.

Let

and put

Since \Sk\ ^'|S, - SJ + |SJ and |SJ S |SJ + |SJ, we have |S»| g m0kn + |SJ, and
therefore

If |SJ = 0, then obviously

And this also holds if \Sn\ > 0, because then there exists a k (1 ̂  k g n) for which
\S k\ ^ \Sn — Sk| and hence there exists a smallest such, so that ISn-^ < |Sn — 5t_!|;
then IS, - Sk\ = m0ka g Ln and |^_i| = m0ik_l<n ^ Ln, and hence [SJ ̂  IS^-j l
+ \Q + \Sn - St| ^ 2Ln + \Q,so (6.5) follows. Finally (6.4) and (6.5) combined
give

There are various ways of bounding the tails of the distributions of |5J and
maxjfcgJ^J, so (6.4) and (6^6) can be used to bound the tail of the distributions of
Mn if we can bound P{Ln g A}. We can derive such a bound by assuming bounds
on the tails of the distributions of the quantities (6.2) of which Ln is the maximum.

16 PATRICK BILLINGSLEY

By (5.13), n/d < <T', and by (5.13) and (5.12),
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THEOREM 6.1. Suppose uit • • • , un are nonnegative numbers such that

the last inequality being a case of xy ^ (x + y)2. Thus (6.7) holds with U; = a2.
The proof of Theorem 6.1 becomes simpler if we first generalize the result.

Let TbeaBorelsubsetof [0,1] and suppose q = [n,:te T} is a stochastic process
with time running through T. We shall suppose that the paths of the process are
right-continuous in the sense that if points s in T converge from the right to a
point t in T, then ns -» r\, at all sample points (if Tis finite, this imposes no restric-
tion). Let

and define

THEOREM 6.2. Suppose u is a finite measure on T such that

for ), > 0 and r, s, t in T. Then

for A > 0, where K is a universal constant.
To deduce Theorem 6.1 from Theorem 6.2, we need only take T = { i /n: 0 ̂  i ̂  n}

and q(i/n) = 5,, 0 g i ^ n, and let u have mass u, at i/n, 1 ̂  i ̂  n. We prove
Theorem 6.2 by considering a succession of cases.

for / > 0, where K is a universal constant.
The exponent 4 in (6.7) can be replaced by any a Si 0 and the exponent 2 can

be replaced by any ft > 1, provided the corresponding replacements are made in
(6.8); K then depends on a and /} but on nothing else. The proof in this more
general case differs from the proof below only notationally.

As a first illustration of Theorem 6.1, consider independent £,- with £{£,•} = 0
and E{<^?} = a2. Since the two quantities in the minimum in (6.2) are independent,
it follows by Chebyshev's inequality that
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Case 1. Suppose first that T= [0,1] and that p is Lebesgue measure. For
positive 91,02, • • •, consider the event (we write m(r, s, t) for mrsl)

We next show that, on the event (6.12), the inequality

holds for all integers k, a, b, c with 0 ^ a <| b <| c g 2*. If k = 1, then a = 0,
b — 1, c = 2 is the only possibility, and (6.14) holds because the sample point is
in (6.12). Suppose as induction hypothesis that (6.14) holds when k is replaced
by k — 1. If, for example, a = Id and b — 2b' are even and c = 2c' + 1 is odd,
then

where M is the maximum of the two quantities

so that (6.14) in this case follows by the induction hypothesis and the assumption
that the sample point is in (6.12). Clearly the other possibilities for the parities of
a, b, and c can be handled the same way.

Thus (6.14) holds in general; since the process {»/,} has right-continuous paths,

follows for sample points in (6.12). If we choose the 0, so the right side of this
inequality is A at most, then P{Ut]) ^ A} has probability at most (6.13). If 9j
= C/2J'8 with C chosen to make the 0} add to 1/2, we get

which disposes of Case 1.
Case 2. Suppose T = [0,1] and p is atomless—that is, F(t) = ju(0, t] is con-

tinuous. If F is strictly increasing and F(l) = w, define

By (6.10),the complimentarity event has probability at most
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Then the process {£(*)} comes under Case 1 and the theorem holds for |jj(f)}
because L(rf} = w1/2L(Q. If F(t) is continuous but not strictly increasing, consider
first the measure having distribution function F({) 4- st, and then let £ go to 0.

Case 3. Suppose that T is finite (which actually suffices for Theorem 6.1).
There is no loss of generality in assuming T contains 0 and 1, so suppose T consists
of the points

If m'rst denotes (6.9) for the process r\', then m'rsl vanishes unless r, s, and t lie in
different subintervals [ t j , r j + 1 ) . Suppose

Then

and hence, by the hypothesis of the theorem for the process r],

Now let v be the measure that corresponds to a uniform distribution of mass
M f t - i} + (i{t,} over the interval [ t ,_, , f , ] , 1 g I ^ w. Then

so (6.16) implies

Although (6.15) requires t < 1, (6.17) follows for t = 1 by a small modification of
this argument.

Thus (6.17) holds f o r O r g r g s g r g l , and Case 2 applies to the process rj ' :

Since L(rj') — L(r\), if we replace the K that works in Cases 1 and 2 by 4K, then
the new K works in Cases 1, 2, and 3.

Case 4. For the general T and /i, consider finite sets

that become dense in T; and let fin have mass fi{(tn ,•_,, tn ,•] n T} at the point tni.
If f?(r" is the process t] with the time set cut back to Tn, then L(r\{n)) -» L(rj) by right-
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continuity of the paths. Since each rj{n> is easily seen to come under Case 3, the
general result follows by a passage to the limit.

7. Tightness. We can now combine the results of the preceding two sections
to establish the tightness of the distributions of the random functions

considered earlier.
Suppose that {<!;,, £2, • • •} is a stationary process with

and assume

Put 5, = ^ + ..- + & .
I f r 4 = EK,£ l v ( k},then

and therefore

If** = I*=1r,.,then

and so

where

We shall assume that (7,6) is positive, and we shall define the random function
Xn by (7.1) with this value of a.

We shall make one further assumption. Let $\ be the er-field generated by the
random variables £ , , - • • , £k, and let 3i™+1 be the <7-field generated by the random
variables ^+1,^+2, • • • . We shall assume the existance of a finite B such that
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for all k, or, what is the same,

This is one way of requiring that the past and future do not unduly influence
each other.

Of course (7.7) holds with B = 1 in the case of independent £„. If {nn} is a
stationary Markov chain whose stationary and transition probabilities satisfy

and if £„ = <p(f/J, where q> is a numerical function on the state space, then (7.7)
holds with (7.9) for B.

THEOREM 7.1. Suppose that {<!;„} is stationary and satisfies (7.2), that the J in
(7.3) is finite and the a in (7.6) is positive, and that (7.7) holds; then the distributions
of the random functions (7.1) are tight.

Proof. By Theorem 5.4, it suffices to show that, for each e there exists a X > 1
such that

for all sufficiently large n, where Mn is given by (6.1).
With the definition (6.2), we obtain by successively applying (7.7), stationarity,

Chebyshev's inequality, and (7.4),

with KQ = B(c2
0 + J)2. By Theorem 6.1 with u, = K1

0'
2,

By stationarity,

Those two inequalities and (6.6) give

Replacing 4A here by Acr^/n leads to
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For sufficiently large A, the right side here is less than e/A2, so that (7.10) holds for
all n, which proves the theorem.

Suppose for the rest of this section, that the £„ are independent and identically
distributed random variables satisfying (7.2) with o^ > 0. Then the hypotheses
of Theorem 7.1 are satisfied (the J in (7.3) vanishes) and a = a0. Thus the distribu-
tions of the Xn are tight. Furthermore, the central limit theorem holds in this
case:

where N is a normally distributed random variable with mean 0 and variance 1.
Fix t, 0 < t ^ 1. If kn is determined by kn n~l ^ t < (kn + l)n~\ then by (7.1)

and stationarity,

and it follows by Corollary 3 to Theorem 3.3 (consider the map (x, y) -»(x, x + y)
of R2 into itself) that

And now from (7.13) and the analogous relation for the point 5, it follows (Theorem
3.1 again) that

To put it another way,

Since kjn -» t , (7.12) implies Skjff^/n => v/tW, and it follows (Theorem 3.1) that

Thus
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By a simple generalization of this argument, it follows that, i f f , < t2 < • • • < tk,
then

where N l, • • • , Nk are independent, normally distributed random variables with
mean 0 and variance 1. If Yf = ^/t, - t j - jN,- for j ^ 2 and Yl = •^/t[N1, then
(7.14) is the same as

The distributions Pn of the Xn are tight and hence some subsequence of them
converges (Prokhorov's theorem) to some probability measure P on C. Let W be
a random function with distribution P (Theorem 3.2). Now (W^J, W(t2)
— W(ti), • • • , W(tk) - H^fji..!)) has the distribution of the limiting vector in
(7.14). We have thus constructed a random function, a random element of C,
whose increments W(t) — W(s) are normally distributed with mean 0 and variance
t — s—and the increments over nonoverlapping intervals are independent.
Since this is a specification of the finite-dimensional distributions of the random
function W, its distribution is unique. We call W Brownian motion.

Having constructed P and W from a subsequence, we return to a consideration
of the whole sequence {jPn}. By (7.14), the finite-dimensional distributions of the
Pn convergence to those of P; since {?„} is tight, Theorem 5.1 implies Pn=>P.
In other words,

if Xn is defined by (7.1) and the £„ are independent and identically distributed with
mean 0 and positive variance a2.

8. Limit theorems. We have shown that (7.15) holds in the independent case,
and in this section we shall show that it holds more generally under the hypotheses
of Theorem 7.1 together with a mixing condition. We start with a characterization
of Brownian motion W.

THEOREM 8.1. Suppose Y is a random element of C having independent increments
and satisfying E{ Y(t)} = 0 and E{ Y2(t)} = t. Then Y is distributed as W.

Proof. We shall show that Y(t + <5) - Y(t) is normally distributed with mean 0
and variance 5, which will complete the identification of the finite-dimensional
distributions of Y as those of W—which is enough.

Now for each n,
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The summands here are independent and each one has mean 0 and variance S/n.
We shall show that Lyapounov's condition

holds (note that the total variance is 8), so the sum in (8.1) is asymptotically normal
and hence Y(t + 5) - Y(t) is normal. Clearly (8.2) will follow if we prove that

where K.± is independent of s and h.
To prove (8.3), fix s and h for the moment and define

If st = £, + - - • + 4, then

Because of the independence of the increments of y, it follows by Chebyshev's
inequality and the moment conditions that, in the notation (6.2),

Therefore, by Theorem 6.1,

with Ln defined by (6.3). By (6.6) and the fact that | Y(s + h) - Y(s)| = |SJ g Mn,
we have

Now Y(t) is continuous in t, and hence the last term here goes to 0 as « -» oo.
Therefore (replace 4 A by /),

If F(x) is the distribution function of | Y(s + h) - Y(s)|3, then
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Integration by parts gives

so that

Therefore,

taking a = h3!2 gives (8.3) with Kl = I + 3- 4*K.
We next cast Theorem 8.1 in asymptotic form. We say a sequence { Y n } of random

functions has asymptotically independent increments if the difference

goes to 0 for disjoint intervals [s;, tj.
THEOREM 8.2. Suppose that {Yn} has asymptotically independent increments,

that {Yl(t):n = 1, 2, • • •} is uniformly integrable for each t, and that E{ Yn(t)} -» 0
and E{ Y*(t)} -»t as n -» oo for each t; suppose finally that the distributions of
the Yn are tight. Then Yn => W.

Proof. By Theorem 2.2, it is enough to show that if some subsequence of {Y n }
converges in distribution to some Y, then Y is distributed as W. But the finite-
dimensional distributions of such a Y are the limits of those of the subsequence,
so yhas independent increments. Now {Y*( t ) :n = 1, 2, • • •} is assumed uniformly
integrable, and it follows that {Yn(t):n = 1,2, • • • } is also uniformly integrable;
by Corollary 5 to Theorem 3.3, we can integrate to the limit along the subsequence:
E{ Y(t)} = lira E{ Y n(t)} = 0 and E{ Y2(t)} = lim E{ yj(r)} = t. That Y is dis-
tributed as W now follows by the preceding theorem.

We turn finally to the problem of proving convergence in distribution for the
random functions defined by

Here St = £l + ---+£k, and the £„ satisfy the conditions of Theorem 7.1.
That is, {£„} is stationary,

we have
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and

if 3!\ and 2$^ are respectively the a-fields generated by the families {<Jk : fc £1 «}
and {£ t: k ^ n], then

where B is a finite constant independent of «. We shall also assume that

for all fc and n, where

This is a mixing condition which ensures that the distant future is virtually
independent of the past.

THEOREM 8.3. Suppose that {£,, £2, • • •} is stationary and satisfies (8.6) through
(8.9); suppose also that (8.10) holds for some sequence satisfying (8.11). 77ien A"n,
defined by (8.5), converges in distribution to W.

Proof. We shall show that the A'n satisfy the hypotheses imposed on the Yn

in Theorem 8.2. We showed in Theorem 7.1 that the distributions of the Xn are
tight; certainly E{Xa(t)} = 0, and E{Xn(t)} -» t follows from (7.5).

From (8.10) it follows by induction that, if Ai is in the er-field generated by
K«i> • • • - £;,,}< i = ! , - • • , £ , and if a, - £ > , _ , > /, then

The increment Xn(tt) — ATn(s;) is measurable with respect to the ff-field generated
by £[«,], • • • , ^[«,j+ i and [nsj - K_ J - 1 -> oo if ti_1 < st, so the asymptotic
independence of the increments is a consequence of (8.11) and (8.12).

It remains only to prove the uniform integrability of {X%(t):n = 1,2, • • • } .
By the definition (8.5) (recall (x + y)2 g 2x2 + 2y2),

The second term on the right is certainly integrable uniformly in n, and so it will
suffice to prove [S2/n:n = 1, 2, • • • } uniformly integrable. In the notation of §6,

and hence
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and so it suffices to prove separately the uniform integrability of L*/n and of

In the course of proving Theorem 7.1 we established (7.11), which gives

By (8.4) with the distribution function of L*/n for F,

which proves the uniform integrability of L*/n.
To prove the uniform integrability of (8.13) we need a lemma.
LEMMA. // £ and n. are nonnegative random variables and £ is measurable 2$\

and r) is measurable 9$%+1, then

Indeed, by the basic assumption (8.9), if d; = ^lixiIVl and i\ = ^jPjlv are
simple functions, then

and (8.14) for the general case follows by a passage to the limit.
By an application of this lemma, (8.13) satisfies

By stationarity,

whence follows the uniform integrability of the mn. This completes the proof of
Theorem 8.3.

For a very simple application, consider a finite Markov chain {//„} with positive
transition probabilities p-tj and stationary probabilities pt, and suppose £„ = <p(f?M),
where <p is a real function on the state space. Then (8.9) holds with B = max;j-pi;/
Pj. Moreover, the nth-order transition probability pi"' converges to PJ at an
exponential rate:
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Hence (8.10) holds with an = O(p").
If

then

goes to zero exponentially, so that (8.7) holds. Thus Theorem 8.3 applies if (8.15)
holds and if

is positive.
Notice that Theorem 8.3 contains the central limit theorem for the process

{£,,} but does not presuppose it. If / maps C continuously into R1, it follows by
Corollary 3 to Theorem 3.3 that f(Xn)^f(W). If f(x) = x(\), then f(Xn)
= SJff^Jn and f(W) is normal with mean 0 and variance 1, so that

is the central limit theorem. On the other hand, the distribution of f ( W ) is known
for a variety of other functions / on C, and each of these leads to a limit theorem
fortf.}.
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