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Abstract: We use one-dimensional coupled map lattices (CMLs) to generate sounds that reflect their spatial organization
and temporal evolution from a random initial configuration corresponding to uncorrelated noise. In many instances,
the process approaches an equilibrium, which generates a sustained tone. The pitch of this tone is proportional to the
lattice size, so the CML behaves like an instrument that could be tuned. Among exceptional cases, we provide an
example with a metastable strange attractor, which produces an evolving sound reminiscent of drone music.

A common mathematical model of a complex
feedback system is iteration of a nonlinear map of
one or more variables. The resulting unpredictability
and diversity of behavior naturally invite possible
connections to music, where such models have
indeed found uses, primarily to generate note
patterns for use in compositions (e.g., Battey 2004).
In this article we instead adopt this approach
to produce a single sound whose characteristics
reflect the evolution induced by a chosen recursive
rule.

We focus on coupled map lattices, a class of
iterative systems built from a large number of iden-
tical functions of a single variable linearly coupled
to nearest neighbors in a network. As has been
known since their inception, these are particu-
larly convenient models to study self-organization:
From a disordered initialization, many instances
exhibit rapid convergence to a steady state with
recognizable spatial patterns (Kaneko 1993). Our
main goal, then, is to represent these patterns as
sounds.

Note that, in this article, we use the term “space”
to refer to the abstract space in which the evolving
array of variables is arranged, not to the physical
space of a listening environment or of a musical
instrument.

Spatial Organization and Sound Synthesis

Suppose we have a system that evolves in time, and
we want to use it to generate a sound stream. Such
a system possibly has a high-dimensional set of
variables, together with one-dimensional time, and
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for sound generation this multidimensional array
needs to be reduced to a one-dimensional sequence
of numbers. One way to achieve this is to simply
produce one signal per time step, as a single function
of all variables of the system (Stefanakis, Abel, and
Bergner 2015). There might be a canonical selection
of such a function in special cases, but in general the
choice is necessarily arbitrary. Moreover, although
this method does reveal temporal evolution (at least
if the sampling variable is carefully chosen), any
spatial organization is not captured. To remedy this,
we seek to include every variable in our output
sequence.

To investigate spatial organization, we must have
space, and a particularly useful role is played by
the space Z

d of integer vectors with d coordinates,
the d-dimensional integer lattice. An evolving
configuration attaches a variable, in our case a
number, to each point in the lattice, and uses a
rule to modify the variables over time. We will
assume that d = 2, as the same argument applies
equally in higher dimensions. Then there is no
natural way to “cut the configuration into one-
dimensional ribbons” to generate a sound stream
that would incorporate every variable, not even
at a single time. In short, the problem is that the
time (for the sound sequence) is a priori linearly
ordered, whereas the two-dimensional lattice is
not. Nevertheless, there have been some attempts
based on two-dimensional cellular automata such
as the Game of Life and voter models (Burraston
and Edmonds 2005; Miranda 2007; Serquera and
Miranda 2011, 2014).

We conclude that the most promising approaches
are processes on Z, i.e., those whose configuration
is a finite array of numbers arranged on an integer
interval, say [0, n − 1]. The number n is the lattice
size. Referring to the space, we call such processes
one-dimensional, although the dimension of the
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configuration space equals n and could be very large,
typically in our examples between 50 and 400.

The configuration of our process at a time t
therefore consists of real numbers xt(0), . . . , xt(n −
1). This process will evolve in discrete time t =
0, 1, 2, . . . according to a rule that will be specified
shortly, but first we reveal how we obtain the
sequence used to generate sound. Namely, we form
the unique sequence of variables that preserves
the order of the time, and then the order of the
one-dimensional lattice:

x0(0), . . . , x0(n − 1), x1(0), . . . , x1(n − 1), . . . , xt(0), . . . ,

xt(n − 1), . . . (1)

Coupled Map Lattices

Particularly appealing update rules to study self-
organization are those with very simple local
interaction. We now introduce one such class of
rules, which posit that the variable at a location i is
first updated using a function, possibly one that is
nonlinear, of only its current state; the value at the
next time step is computed by a weighted average
of its value and those of its nearest neighbors in
the one-dimensional lattice. Thus the second step
is linear and any perturbation spreads at a speed
of at most one, which is often called the “light
speed.” That is, xt is given recursively, for each time
t = 0, 1, 2, . . ., by the rule

xt+1(i) = (1 − ε) f (xt(i)) + ε

2
[ f (xt(i + 1)) + f (xt(i − 1))].

(2)
Here, ε ∈ [0, 1] is the coupling strength that deter-
mines the influence of spatial neighbors, and f is a
given function. We assume periodic boundary, that
is, for i ∈ [0, n − 1], its neighbors i − 1 and i + 1 are
computed modulo n. Such a rule is called a one-
dimensional coupled map lattice (CML). We will
restrict the variable values xt(i) to a suitable interval,
either [−1, 1] or [0, 1]. In the latter case, whenever
the updated variable is outside the interval we
replace it with its fractional part; equivalently, we
could assume that individual variables are points on
a (continuous) circle.

Typically, our initial configuration is random. To
be precise, x0(i), i = 0, . . . , n − 1 are chosen indepen-
dently and uniformly from the set of possible values.
This maximally disordered initialization is arguably
the best test of the rule’s self-organizing capabilities.
Interesting sounds can be generated with special
initial configurations, however, as we will see later
in sections on “Sine Wave Initialization” and “Zero
Initialization.”

Coupled map lattices were utilized by Kunihiko
Kaneko in 1983 to model spatiotemporal chaos with
discrete-time, discrete-space, and continuous-state
dynamics (for a survey, see Kaneko 1993). We will
only consider three examples of the map f : the
linear map, the logistic map used by Kaneko, and
the circle map. For the latter two choices, CMLs
are, in a sense, coupled nonlinear oscillators. The
linear map facilitates the exposition through its sim-
plicity, and demonstrates an interesting connection
between CMLs and the Karplus-Strong algorithm.
The logistic map is considered because of the role it
has played in the existing literature on CMLs, and
because it provides good examples of periodic, inter-
mittent, and chaotic behavior. The most interesting
sounds, however, are generated by the circle map,
which exhibits a number of interesting evolutions.
Examples we provide include chaotic, periodic, and
almost periodic behavior; synchronization; inter-
acting particles; and metastable strange attractors.
Often, the mixture of noise and order in the CML
is reminiscent of chimera states in neural network
dynamics (Hizanidis et al. 2016); see, for example,
the CML given later in the section on “Evolution
of CML with the Circle Map: Metastable Strange
Attractor.”

There are several natural ways in which Equa-
tion 2 can be generalized. For example, one may
change the neighborhood of i from nearest neighbor
i ± 1 to a larger range r : i ± 1, . . . , i ± r . This does
not seem to make a qualitative difference. Another
possibility is to forgo translation invariance and to
assign either a different ε or a different f to different
lattice points i. A random assignment of this kind
is an analogue of spin-glasses (Stein and Newman
2013) and is an intriguing direction that is largely
beyond the scope of this article, although we do
provide one example (see Equation 3 later in this
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article). Finally, generalizations to other lattices are
mathematically interesting, but, as discussed, it is
unclear whether this could be done without losing
the natural correspondence to digital audio signals.

Previous Work

Of all existing sound-synthesis techniques, our
approach most closely resembles the linear automata
synthesis (LASy) of Jacques Chareyron (1990). There
are two main differences between LASy and CML
synthesis. The first is that the former uses cellular
automata with a large set of discrete variable
values, whereas the latter uses coupled map lattices,
which have continuous variables. In this sense, our
approach is a natural extension of LASy. The second
difference is that the LASy method focuses on linear
cellular automata, mentioning other possibilities
only in passing, whereas we view linear rules as a
starting point into more general CMLs. Notice again
that both of these schemes use one-dimensional
lattices; higher-dimensional cases require mapping
the output of the system in a more creative way. For
example, histogram mapping synthesis (Serquera
and Miranda 2011, 2014) uses densities of variables
in evolving cellular automata dynamics to control
the parameters of a synthesizer. Another approach,
Chaosynth, uses a cellular automaton inspired by
neural reverberatory circuits to control the pitch
and duration of sinusoidal grains in a granular
synthesizer (Miranda 1995).

A recent article by Stefanakis, Abel, and Bergner
(2015) uses ordinary differential equations (ODEs)
for digital synthesis. This method bears some
similarity to ours in that it uses dynamical systems.
It generates only one signal per time step, as a
function of all variables, to generate a time series
that produces the sound, however. By contrast, each
of our variables generates a signal in the lattice order,
so the resulting sound reflects spatial organization
as well as temporal evolution. Furthermore, discrete
space and time have the practical advantage that
computations are simple and very fast. By contrast,
coupled ODEs (which evolve in discrete space and
continuous time) or partial differential equations
(in which both space and time are continuous)

would require potentially sophisticated solvers
(Dzjaparidze 2015).

There is also a theoretical advantage to CMLs:
No existence and uniqueness results are needed.

Key Features of CML Synthesis

In our experiments, most CML dynamics rapidly
converge to a stable equilibrium, which results
in a steady tone. In almost all cases, the pitch of
the tone is inversely proportional to the lattice
size. The proportionality constant depends on the
sampling rate and the temporal behavior of the
CML. Although we do not have a formal definition,
we refer to these cases as regular. Two exceptions
are discussed in some detail later in this article: a
CML with a logistic map (Equation 4) with a highly
chaotic behavior (producing white noise), and a
CML determined by the parameters in Equation 11
with a highly organized behavior (resulting in a high
frequency tone). Both of these require very specific
parameter settings.

In the regular cases, the timbre of a CML’s tone
is determined by the chosen parameters and the
initial configuration. The random initialization
results in slight variations between different runs of
the dynamics, akin to physical instruments, which
also produce subtly different tones even when the
same pitch is played with the same loudness. The
effect of the parameters on the timbre of a CML is
dependent on the definition of the map, but some
general observations can be made. The degree to
which the map f itself is chaotic has the expected
effect. Namely, the nonlinearity parameter (a in the
logistic map, defined later in Equation 4, and K in
the circle map, defined in Equation 5) governs how
simple the sound is: Large nonlinearity results in
chaotic noise, and other values generate tones with
varied degrees of complexity. The coupling strength
ε has an unpredictable effect on evolution, and often
needs fine tuning.

Outline and Highlights

Our main purpose is to use CMLs as instruments
in the following fashion: Generate a random initial
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configuration, choose the dynamic parameters,
and observe the resulting sound. Different choices
produce starkly different sounds, from pitched
tones, to noise, to something in between. In the
following sections, we concentrate on examples,
both to illustrate the regular dynamics and to
provide interesting unusual cases. First, however,
we give an overview of our approach in the following
section. We follow with a brief exposition on the
basic case of the linear map, and then provide three
examples with the logistic map that demonstrate
how CMLs generate sound that range between
order and noise. Perhaps the most interesting are
the CMLs that use the circle map f . We provide
four examples: The first demonstrates that CMLs
are capable of producing rich and varied textures
thanks to slow convergence to the steady state, the
second is an example of a nonunique equilibrium
with unusual lack of dependence on the lattice size,
the third produces slowly changing timbre, and
the last CML generates a frequency that is lower
than expected. Finally, we give a few examples with
special initializations. We demonstrate the use of
CMLs as musical instruments by tuning them to
play a few melodies, some well-known and some
computer-generated. Three example melodies are
described in the Appendix, including a description
of the parameters used.

Interpreting a CML Evolution as a Sound

As explained in the section “Spatial Organization
and Sound Synthesis,” we interpret each lattice
variable in a CML evolution as a digital audio signal,
and order these signals as in Equation 1. We have
chosen a sample rate of 44.1 kHz (the compact disc
standard) in all our examples. After a short burst
of white noise (due to the initial randomness), the
resulting audio stream is a sound with evolving
timbre. Because the dynamics tend to rapidly evolve
into a stable or metastable steady state, the transient
period is almost imperceptible and the result is close
to a single sound. The nature of the sound depends
upon the behavior of the CML. If the equilibrium is
spatially simple, dominated by temporarily periodic
regions, our synthesizer produces a pitched tone.

Spatial simplicity alone does not suffice for a
pitched tone, however. As we will see in the section
on “Zero Initialization,” there is an example with
nearly constant equilibrium whose values change
chaotically and hence result in noise, even with
constant initialization. On the other hand, it is easy
to generate simple temporal behavior (namely, by
choosing f to be the identity map with ε = 0), which
leaves the spatial chaos invariant and, hence, also
produces noise.

We reiterate that two sounds, generated with
the same map, parameters, and lattice size, but
different random initial samples, will both sound
similar, as they are generated by the same process,
but they are subtly distinct from one another. This
balance of similarity and variation is analogous to
the way sounds produced by a physical instrument
will have a recognizable timbre, but will reveal
subtle differences when sounding the same note.
Another parallel is that the dominant frequency,
and therefore the tuning procedure, cannot be
determined a priori for all parameter choices, but
only after running the particular dynamics—by
“playing the instrument,” as it were. We elaborate
on this point next.

With the exception of a few special cases, the
pitch of the tone produced by a CML is inversely
proportional to the lattice size n. Given a CML with
a lattice of size n and a sample rate of s samples
per second, the fundamental frequency of the tone
produced by the CML synthesizer will be s/(nT)
Hz for some T ∈ {1, 2, 3, . . .}. If a CML has a steady
state that is periodic (or nearly periodic) with a
sufficiently small temporal period, then T will be
determined by the temporal period of the CML.
This is because the sequence of samples generated
by the consecutive lattice points will be periodic (or
nearly so) with period nT. and so they will produce
a tone of frequency s/(nT). If the temporal period is
too large, s/(nT) will be below the range of human
hearing and we will perceive the strongest upper
partial of this frequency as the fundamental. In this
case, the dominating frequency tends to be s/n.

The only exceptions to the linear dependence on
n that we are aware of involve rules that produce
a very close approximation to white noise and
rare spatially periodic examples. Even chaotic
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sounds that do not produce a tone having a clear,
definite musical pitch do have an audible change
of pitch as a result of a change in the lattice size.
Additionally, the discontinuity between temporal
updates provides a periodic signal with frequency
inversely proportional to the lattice size. These
two contributions are fundamentally different. For
example, if n is large, the second effect amounts to a
sequence of “pops.” To reiterate, the inverse of n will
be present in the frequency domain, except when
the lattice configuration is spatially periodic and
temporarily constant. The latter level of regularity
is very difficult to achieve with a CML starting from
a random initialization. We do, however, provide
an example in which this happens at least with a
positive probability (this will be discussed in greater
detail in the section “Evolution of CML with the
Circle Map: Annihilating Diffusions”). Trivially, we
can also achieve this by the identity map f , ε = 0,
and with a periodic initial configuration.

The diffusion caused by the local averaging acts,
in the frequency domain, as a low-pass filter on the
signal after the possibly chaotic map f has been
applied to each lattice point. This filtering operation
mitigates the extent to which higher partial tones
are present in the sound produced by the CML and
thus helps to reinforce the fundamental frequency
proportional to the inverse of n. The strong and
predictable relationship between the lattice size and
the frequency of the sound enables CMLs to be used
as a natural method of digital synthesis.

For example, a tone generated by a CML with
temporal period 2 and lattice size 50 at 44.1 kHz
will have a fundamental frequency of 441 Hz, which
is about 4 cents sharper than the middle A tuned
at 440 Hz. Notice that with the standard 44.1-kHz
sample rate, we cannot get closer to the frequency
440 Hz. The relationship between n and frequency
allows us to easily control the pitch generated by a
CML, but it also causes the precision of our tuning
to be limited by the sample rate.

A Simple Example: The Linear Case

Consider a linear map f : [−1, 1] → [−1, 1], defined
by f (x) = ax for all x ∈ [−1, 1]. Here, the coefficient

a is in [−1, 1] (values of a outside of this range can
be used, but then we have to use a fractional part
operation to map back into the interval [−1, 1]).
If we start from a random initialization and take
ε ∈ (0, 1], this gives us a CML which is, effectively,
an implementation of the Karplus-Strong algorithm
for plucked-string synthesis (Karplus and Strong
1983). Indeed, the transition rule of our CML takes
a weighted average of adjacent samples in the sound
stream generated by Equation 1, and thus acts as a
low-pass filter on the signal.

This linear case is particularly attractive for
the following reason: When it starts from ran-
domness, it emulates a plucked string of length
proportional to the length of lattice. In fact, this
case has appeared in the literature in the guise
of a linear cellular automaton with a large num-
ber of variable values (Chareyron 1990). A few
examples generated using a = 0.99 and ε = 0.5
are illustrated visually in Figure 1 and can be
heard as Sound Examples 1–3. [Editor’s note: All
sound examples can be heard on the CMJ Web site
at www.mitpressjournals.org/doi/suppl/10.1162
/COMJ a 00458.]

In Figure 1a (and in later figures), we exhibit
space–time pictures of the corresponding CML
evolutions. As is standard in the CML literature, the
entire spatial configurations xt(0), . . . , xt(n − 1) are
depicted horizontally, with the configuration at time
t + 1 below the one at time t. Thus, the initial state
at time t = 0 is at the top, and time runs downwards.
The variable at each lattice point is linearly mapped
to a shade of gray, so that white corresponds to the
right endpoint of the state space and black to the
left endpoint. For example, in Figure 1a the variable
is in [−1, 1], so the lighter and darker shades depict
values close to 1 and −1, respectively.

Figure 1b displays a spectrogram of the sound
generated by the same CML, with lighter shades
of gray corresponding to larger amplitudes, using
the same time period as the space–time pictures.
In this (and the following figures), time runs hor-
izontally from left to right, as is standard for
spectrograms.

We also provide a preliminary example of the dis-
ordered version of the CML rule given by Equation 2,
namely,
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Figure 1. The evolution of
the linear coupled map
lattice (CML) with lattice
size n = 100, a = 0.99, and
ε = 0.5, from a random
initial configuration, in the

time domain (a) and in the
frequency domain (b). The
time-domain
representation used here
places time on the vertical
axis, oriented downwards,

and space on the
horizontal axis, as is
typical in the CML
literature.

xt+1(i) = (1 − εi) f (xt(i)) + εi

2
[ f (xt(i + 1)) + f (xt(i − 1))],

(3)
where εi are random, in our case chosen inde-
pendently and uniformly on [0, 1]. This produces
a sound with more pronounced upper partials
that correspond to enhanced horizontal lines in
the spectrogram in Figure 2; refer also to Sound
Examples 4–6.

The Logistic Map

We use the following version of the logistic map:

f (x) = 1 − ax2. (4)

We will assume that the nonlinearity parameter a
is in the interval [1, 2], so that f maps the interval
[−1, 1] into itself. The choice of Equation 4 was
made by Kaneko in his pioneering work on CMLs
(Kaneko 1993). Other versions of the logistic map
are equally natural and produce similar results
(e.g., f (x) = ax(1 − x)).

Values of a near 1 result in a sound that rapidly
converges to a steady tone. As a increases, the CML
behaves more chaotically, resulting in sounds that
become closer to noise than to a pitched tone. See
Figure 3 for time domain and spectrogram plots of
logistic map CMLs with a few different parameter
values. (Refer to Sound Examples 7–15.)

We note that when a = 2 and ε = 0, each lattice
point behaves chaotically and independently of
others, resulting in a close approximation to white
noise. This is a simple instance in which the lattice
size has no effect on the sound produced by the
CML.

The Circle Map

In this case, the variables have values in the interval
[0, 1] and

f (x) = x + ω − K
2π

sin(2πx) mod 1. (5)

Here, ω represents a phase shift and K the strength
of nonlinearity. Taking the fractional part mod 1 is
needed because without it f does not necessarily
map [0, 1] into [0, 1]. In the following discussion, we
examine the behavior in the case of four different pa-
rameter settings with random initial configurations
and explore special initializations.

The Kuramoto model is an ODE that has been
widely studied as a prototype for synchronization,
whereby the evolution leads to nearly equal variable
values across space in spite of the possibly chaotic
temporal evolution (for a comprehensive survey,
see Acebrón et al. (2005); for examples, see our
discussions of the metastable strange attractor
and near-periodicity later in this article). With the
circle map f as in Equation 5, the CML could be
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Figure 2. The evolution of
the disordered CML given
by Equation 3, with lattice
size n = 100, a = 0.99, and
εi chosen independently

and uniformly on [0, 1],
from a random initial
configuration, in the time
domain (a) and in the
frequency domain (b).

interpreted as a version of the Kuramoto model
with discrete time and local coupling. Thus it is no
surprise that we observe synchronization in several
of our examples (see our remarks after Equations 6
and 13), although conditions on the parameter values
that result in this scenario are rather unclear.

Evolution of CML with the Circle Map: Metastable
Strange Attractor

First, we consider the circle map with parameters

ω = 5/9, K = 1, ε = 0.3. (6)

Owing to the complexity and longevity of its
evolution to the steady state, we need to develop
some statistical tools to understand this CML.
Figure 4 depicts the behavior of three statistics. The
simplest is the unscaled variance

δt =
n−1∑
i=0

xt(i)2 − 1
n

(
n−1∑
i=0

xt(i)

)2

, (7)

which simply measures how far xt is from a constant.
A more involved tool is the cross-correlation (Stoica
and Moses 2005), defined for t = 1, 2, . . . by

cross corrt(k) =
n−1∑
i=0

xt−1(i − k) xt(i). (8)

Note that, when negative, i − k is interpreted as i −
k+ n because of the periodic boundary conditions.
This quantity compares a configuration with its
spatial shift by k, and leads to two other statistics:

ρt = max
k

cross corrt(k), (9)

τt = min{k : cross corrt(k) = ρt}. (10)

The quantity ρt measures the extent to which xt is a
translation of xt−1, and τt is the optimal translation,
that is, one with largest cross-correlation. See
Figure 4 for the resulting evolution for three lattices
sizes, up to time 107. By this time, the dynamics with
n = 70 reached a stable synchronized configuration,
with δt very close to 0. Therefore, at any fixed
time, all the variables are nearly equal. Their
approximately common value, however, changes
chaotically over time, owing to the nonlinearity of
f . The resulting sound evolves into chaotic taps
because of the discontinuities between iterates. A
tone with frequency proportional to 1/n is also heard
(see the discussion in the section on “Interpreting
a CML Evolution as a Sound”). We conjecture that
this is the fate of the CML with parameters given by
Equation 6 for every lattice size. The waiting time for
n ≥ 100 is so large, however, that synchronicity is in
practice never reached. Instead, for n between about
100 and 300 we see the dynamics largely oscillating
between two metastable polarity configurations,
characterized by waves traveling in two opposite
directions, with brief periods of polarity reversal
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Figure 3. Three examples
of the CML with the
logistic map (Equation 4),
each with 100 iterations
and lattice size n = 100.
Time-domain plots are
given on the left, with

spectrograms of the signal
generated by the same
CML on the right. The
parameter values used are:
a = 1 .1, ε = 0.3 (a); a =
1.75, ε = 0.3 (b); and a = 2,
ε = 0.5 (c). Sound

Examples 7–15 are
generated by these three
pairs of parameters (see
main text for the URL to
the audio files).
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Figure 4. Evolution of the
CML with the circle map
(Equation 5) and
parameters given by
Equation 6, with n = 70
(a), n = 200 (b), and n =
400 (c). In each frame, the

bottom (medium gray)
curve depicts δt, the
middle (dark gray) ρt and
the top (light gray) τt. See
text for complete
explanation.

between them. This is most clearly seen in the
middle frame of Figure 4, where polarity periods
are distinguished by flat lines in the translation
statistic τt. The evolution is thus dominated by a
kind of strange attractor that creates an evolving
sound reminiscent of drone music (particularly of
popular German electronic music of the 1970s,
nicely exemplified on the Tangerine Dream album
Zeit) punctuated by rhythmic crackling noises
during reversals. For larger n, the temporal evolution
appears chaotic in Figure 4, as the polarity is only
rarely reached; however, the spatial organization is
similar to that of the polarity configurations and
thus the droning sound persists with no, or only
rare, reversals.

Although these properties make these parameter
settings inappropriate for use in a melodic or har-
monic context, they result in a rich evolving timbre
that is well-suited for avant-garde compositions.
(Refer to Sound Examples 16–18.)

Evolution of CML with the Circle Map:
Annihilating Diffusions

We now consider the case with parameters

ω = 0.5, K = 1, ε = 1. (11)
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Figure 5. The first 1,000
time steps of the evolution
of the CML with the circle
map (Equation 5) and
parameters given by
Equation 11, with n = 400.

These generate two competing equilibria, one
with horizontal stripes (with temporal period 2
and spatial period 1) and one with vertical stripes
(with temporal period 1 and spatial period 2), with
diffusing boundaries between the two equilibria. See
Figure 5 for an illustration. There are also stationary
defects that generate pronounced vertical lines and
that interact with the boundaries in an unpredictable
fashion. The invariant state is therefore not unique:
One or the other equilibrium is reached with equal
probability. When the lattice size is small, it is very
likely that the stationary defects disappear and so,
with probability close to 1/2, the generated sound
is a square wave with frequency equal to half the
sample rate; this sound is very high-pitched and

Figure 6. First 250 time
steps (a), followed by 500
time steps starting later
around time step 40,000
(b), of the evolution of the

CML with the circle map
(Equation 5) and
parameters given by
Equation 12, with n = 400.

independent of the lattice size. (Refer to Sound
Examples 19 and 20.)

Evolution of CML with the Circle Map:
Repelling Particles

Next is the case with parameters

ω = 0.5, K = 0.1, ε = 0.6. (12)

After a considerable time, the evolution self-
organizes into a system of repelling particles on
a slowly evolving background. Figure 6 provides
an illustration. As a result, the tone produced by
the CML with these parameters will have steadily
changing timbre. Because the repelling particles
travel slowly, a high degree of structural similarity
is preserved between consecutive lattice variables,
and so the tone evolves smoothly. After an initial
period during which the particles are created and
destroyed, their number stabilizes, which ensures
an upper bound on the difference between two

Gravner and Johnson 31



Figure 7. The first 250 time
steps (a), followed by 500
time steps starting later
around time step 40,000
(b), of the evolution of the

CML with the circle map
(Equation 5) and
parameters given by
Equation 13, with n = 400.

timbres at different times. This can be heard in
Sound Examples 21 and 22.

Evolution of CML with the Circle Map:
Near-Periodicity

Finally, we consider the case with parameters

ω = 0.2, K = 0.2, ε = 0.12. (13)

This selection leads, after a few thousand itera-
tions, to a stable, nearly periodic equilibrium with
a spatial period of about 80; see Figure 7. We note
that ε requires some finetuning here: A significantly
larger value for ε leads to a chaotic state, whereas a
significantly smaller ε leads to synchronization. Un-
like in the CML determined by Equation 6, however,
the approach to synchronicity is gradual. The sound
produced by these parameters has a timbre that
varies somewhat more than the repelling-particle
case given by Equation 12, but considerably less
than the metastable strange-attractor case given

by Equation 6. In addition to being nearly periodic
spatially, these dynamics are also close to being
temporally periodic, with a temporal period of 5.
As a result, the fundamental frequency F of a tone
produced at a sample rate s with a lattice of size
n is given by F = s/(5n). The fifth upper partial
(frequency s/n) is particularly strong and can be
heard distinctly above the fundamental. (Refer to
Sound Examples 23 and 24.)

Sine Wave Initialization

Interesting results can be obtained by setting the
initial configuration to

xi(0) = 1
2 (sin(2πmi/n) + 1), i = 0, . . . , n − 1,

(14)
where m is a positive integer parameter. Note
that with identity map f and ε = 0, this initial
configuration would result in a sine wave with
frequency sm/n. In contrast, with a random initial
configuration, which approximates a range of
frequencies at equal strength, this initialization uses
a single frequency.

Usig the circle map f (of the form in Equation 5),
and a sufficiently large lattice size (n greater than
about 10,000), this setting creates a rhythmically
pulsing tone. With a given sample rate s, and mand
n, the tone has frequency f = sm/n. The rhythm is
determined by the dynamic parameters ω, K, and ε.
As a rule of thumb, if ω = p/q is a rational number
represented by a reduced fraction, then the rhythm
can be interpreted as having q beats per measure,
with tempo s/n. Because of rounding errors, the
pulsing gradually devolves into noise. This “descent
into chaos” is particularly striking when m= 100
and f is the circle map with parameters given by
Equation 6. Sound Examples 25 and 26 use the
parameters provided in Table 1.

Zero Initialization

If the system is synchronized initially, as when
xi(0) = 0 for all i, then it remains synchronized
forever. Therefore, the system reduces to the

32 Computer Music Journal



Table 1. Parameter Values for Sine
Wave Initializations

n m ω K ε

Example 1 10,000 10 5/9 1 0.3
Example 2 10,000 10 3/7 1 0.3
Example 3 200 1 5/9 1 0.3
Example 4 10,000 100 5/9 1 0.3

iteration of the map f , and the coupling strength
ε has no influence. This allows us to provide a
simple example of a sound generated by CML that
has spatial simplicity but still produces noise. This
is illustrated by the circle map with parameters
ω = 5/9 and K = 2.5. The generated sounds make
it clear that the temporal chaos “drowns out” the
spatial order. This is especially pronounced with
smaller lattice sizes, as shown by Sound Examples
29 and 30.

Conclusions and Future Directions

We have explored the use of complex nonlinear
dynamics as a sound generator. Specifically, we
used one-dimensional coupled map lattices, which
combine the iteration of a nonlinear map with
linear local averaging. We presented a method of
synthesizing sound from the resulting dynamics
by using variables at all spatial locations in the
lattice order (and also in temporal order). In a
typical case, rapid convergence to an equilibrium
produces a steady tone. The spatial organization
of the steady state determines a characteristic
timbre of this tone, with subtle variations due to
different initial conditions. Moreover, the size (i.e.,
the length) of the network determines the pitch.
From this perspective, such a mathematical object
is an abstract form of a musical instrument.

We have limited our exploration to several case
studies with a linear, logistic, or circle map.

The linear case emulates the sound of a plucked
string, with detectable alteration when the coupling
strengths are chosen at random. The behavior
induced by our first nonlinear function, the logistic
map, is as expected: As the nonlinearity increases,

the resulting sound interpolates between a pitched
tone and noise.

By far, the most versatile is the circle map, for
which we have provided four particularly interesting
choices for its three parameters. We have given two
examples with embedded particle systems, one
with annihilating diffusions with two competing
equilibria and another with repelling particles that
produces a steadily changing timbre. Another circle
map case exhibits nearly periodic behavior with a
resulting combination of frequencies. Our leading
circle map example converges to its equilibrium
very slowly, providing an opportunity to hear
a sonic representation of a metastable strange
attractor, which turns out to resemble drone music.
The same parameter choice also produces, when
initialized by a sine wave, a melody that gradually
devolves into noise.

Our results open several avenues for further
exploration. Clearly, one could look for new features
using different functions f from those that were
investigated here. Perhaps a greater priority is to
fully understand the potential of the circle map
with its three parameters ε, ω, and K. Indeed,
our most interesting examples were obtained by
little more than educated guessing. An “atlas” of
parameter space with a catalog of behaviors would
be expedient if one wanted to contemplate possible
applications to, say, sound effects in computer
games. Particularly the role of the coupling strength
ε is mysterious and counterintuitive, and it deserves
additional investigation. Furthermore, we only
touched on the effects of spatial heterogeneity:
Either ε or a parameter in the function f could vary
from location to location (e.g., by a random choice).
Temporal heterogeneity is another possibility: The
update rule may change abruptly or gradually—for
example, to create a tone decay. Finally, adding
random noise to the update rule may test the
stability of some of the observed behaviors.

Acknowledgments

We thank the reviewers and the editor for their
constructive comments, which significantly im-
proved the presentation. Both authors were partially

Gravner and Johnson 33



supported by NSF grant DMS-1513340. Janko
Gravner also received partial support through
Simons Foundation Award no. 281,309 and the
Republic of Slovenia’s Ministry of Science program
P1-285.

References

Acebrón, J. A., et al. 2005. “The Kuramoto Model: A
Simple Paradigm for Synchronization Phenomena.”
Reviews of Modern Physics 77(1):137–185.

Battey, B. 2004. “Musical Pattern Generation with
Variable-Coupled Iterated Map Networks.” Organised
Sound 9(2):137–150.

Burraston, D., and E. Edmonds. 2005. “Cellular Automata
in Generative Electronic Music and Sonic Art: A
Historical and Technical Review.” Digital Creativity
16(3):165–185.

Chareyron, J. 1990. “Digital Synthesis of Self-Modifying
Waveforms by Means of Linear Automata.” Computer
Music Journal 14(4):25–41.

Dzjaparidze, M. 2015. “Exploring the Creative Potential of
Physically Inspired Sound Synthesis.” PhD dissertation,
Queen’s University Belfast.

Hizanidis, J., et al. 2016. “Chimera-like States in Mod-
ular Neural Networks.” Scientific Reports 6:Art.
19845. Available online at www.nature.com/articles
/srep19845. Accessed February 2018.

Kaneko, K. 1993. “The Coupled Map Lattice.” In
K. Kaneko, ed. Theory and Applications of Coupled
Map Lattices. New York: Wiley, pp. 1–49.

Karplus, K., and A. Strong. 1983. “Digital Synthesis of
Plucked String and Drum Timbres.” Computer Music
Journal 7(3):43–55.

Miranda, E. R. 1995. “Granular Synthesis of Sounds by
Means of a Cellular Automaton.” Leonardo 28(4):297–
300.

Miranda, E. R. 2007. “Cellular Automata Music: From
Sound Synthesis to Musical Form.” In E. R. Miranda
and J. A. Biles, eds. Evolutionary Computer Music.
Berlin: Springer, pp. 170–193.

Serquera, J., and E. R. Miranda. 2011. “Cellular Automata
Dynamic Control for Sound Design with Histogram
Mapping Synthesis and the Multitype Voter Model.”
In Proceedings of the International Computer Music
Conference, pp. 139–142.

Serquera, J., and E. R. Miranda. 2014. “Histogram Mapping
Synthesis: A Cellular Automata-Based Technique for
Flexible Sound Design.” Computer Music Journal
38(4):38–52.

Stefanakis, N., M. Abel, and A. Bergner. 2015. “Sound
Synthesis Based on Ordinary Differential Equations.”
Computer Music Journal 39(3):25–43.

Stein, D. L., and C. M. Newman. 2013. Spin Glasses
and Complexity. Princeton, New Jersey: Princeton
University Press.

Stoica, P., and R. Moses. 2005. Spectral Analysis of
Signals. Upper Saddle River, New Jersey: Prentice
Hall.

Appendix: Parameters in Examples of Melodies

We provide three examples of melodies:
Sound Example A1: To play “In the Hall of the

Mountain King” by Edvard Grieg, from his incidental
music to Peer Gynt, we use the circle map with
ω = 0.5 and K = 0.1 throughout the excerpt with
three different values of ε, starting with ε = 0.6,
switching a third of the way through to ε = 0.65,
and in the final third to ε = 0.7.

Sound Example A2: The opening to Ludwig
van Beethoven’s Fifth Symphony is played using
the logistic map with different parameter values
for each note. So there are too many values to
list.

Sound Example A3: Finally, the sequence of notes
for a generated melody was produced by a computer
algorithm unrelated to the topic of this article.
It is played using the circle map with parameters
ω = 0.13, K = 0.9, and ε = 0.3.
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