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Outline

• Big idea: a different technique (“principle of maximum
entropy”) allows us to approach an old problem
(enumerating integer partitions) with new intuition and a
more powerful/flexible solution.

• Sketch of the method for a classical example
(Hardy-Ramanujan asymptotic partition formula)

• Variations on the classical problem
• Our result
• Time permitting, a few ideas from the proof of one part
(Local CLT)
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Integer partitions

Definition

A partition of a positive integer n is a representation of n as
an unordered sum of positive integers.

Example:

• 5+ 2+ 1 and 4+ 2+ 1+ 1 are both partitions of 8.
• 5+ 2+ 1 and 1+ 2+ 5 are the same partition of 8.
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Integer partitions

Definition

A partition of a positive integer n is a representation of n as
an unordered sum of positive integers.

Question: How many different partitions of n are there? Write
P(n) for the set of partitions of n, and p(n) for the number.
E.g. p(4) = 5:

• 4
• 3 + 1
• 2 + 2
• 2 + 1 + 1
• 1 + 1 + 1 + 1
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Integer partitions

Definition

A partition of a positive integer n is a representation of n as
an unordered sum of positive integers.

Problem: How many different partitions of n are there? Write
P(n) for the set of partitions of n, and p(n) for the number.

For the first few values, p(n) is

1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297

In general, very hard! No closed form known.
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Counting partitions

Problem 2.0: Find asymptotic behavior of p(n) as n → ∞.

Theorem (Hardy and Ramanujan, 1918)

p(n) = 1+ o(1)
4
√
3n

eπ
√

2
3
√
n
.
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Counting partitions

Theorem (Hardy and Ramanujan, 1918)

p(n) = 1+ o(1)
4
√
3n

eπ
√

2
3
√
n
.

Question: Intuitive explanation? Even just for the exponent?

• Original proof: circle method.
• Extract p(n) from generating function with Cauchy’s
residue formula. ⇒ need to evaluate nasty complex
integral.

• Our idea: principle of maximum entropy.

Warning! Fuzzy math ahead.
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Maximum entropy

• Probabilistic approach: try to understand partitions of n
by looking at some probability distribution on partitions
of any integer.

• Which distribution to choose?
• Jaynes’ principle of maximum entropy: “best” distribution
has maximum entropy among all distributions that give a
partition of n in expectation.

• Best how?
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Maximum entropy

Definition
Given a discrete random variable X, the entropy of X is

H(X) :=
∑
x

Pr(X = x) log
(

1
Pr(X = x)

)
.

Measures the amount of “randomness” or “information” in X.

Fact
On a finite set S, the uniform distribution has the largest
entropy of any distribution: log |S|.

So |S| = eH(X) if X is uniform. Not any easier!
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Maximum entropy

Fact: If X is uniform on P(n), we have p(n) = eH(X).

Entropy of uniform distribution too hard to compute :(
But what about an almost uniform distribution?

Hope: maybe we can find a distribution X (on partitions of any
integer) that’s...

• constant(ish) on P(n),
• fairly concentrated on P(n),
• and where we can compute its entropy.

Then maybe p(n) ≈ eH(X). Very sketchy.
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Maximum entropy

Idea: Want an “almost uniform” distribution X on partitions of
any integer where we can compute H(X). Hope that
p(n) ≈ eH(X).

What’s the “best” distribution? Try Jaynes’ principle of
maximum entropy. Here, it says:

Find the maximum entropy distribution X = (X1, X2, . . . ) on
N× N× . . . (where Xk = multiplicity of k) subject to

E
[∑

k≥1 k · Xk
]
= n.
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Maximum entropy

Problem: Find max entropy X = (X1, X2, . . . ) subject to
E
[∑

k≥1 k · Xk
]
= n.

Start with any distribution (Y1, Y2, . . . ).

• Fact 1: “Decoupling” the marginals Yk increases entropy.
• Fact 2: Replacing any Yk with a geometric r.v. with mean
µk = E[Yk] increases entropy.

⇒ Max entropy (X1, X2, . . . ) has independent geometric Xk’s.
Just need the right sequence of means (µ1, µ2, . . . ).
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Maximum entropy

New problem: Find right sequence of means (µ1, µ2, . . . ) to
maximize the entropy of the corresponding distribution
(X1, X2 . . . ) of independent geometric random variables,
subject to

∑
k≥1 k · µk = n.

Fact

A geometric r.v. with mean µ has entropy

G(µ) := (µ+ 1) log(µ+ 1)− µ logµ.

Corresponds to a discrete optimization problem:

Maximize
∑
k≥1

G(µk), subject to
∑
k≥1

k · µk = n.
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Maximum entropy

Maximize
∑
k≥1

G(µk),

subject to
∑
k≥1

k · µk = n.

Rescale by writing m(x) := µx
√
n, “massage” the sums

algebraically, and interpret them as Riemann sums. Then as
n → ∞, approximately a continuous optimization problem:

Maximize
√
n ·

∫ ∞

0
G(m(x))dx,

subject to
∫ ∞

0
x ·m(x)dx = 1.
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Maximum entropy

Maximize
∑
k≥1

G(µk),

subject to
∑
k≥1

k · µk = n.

Rescale by writing m(x) := µx
√
n, “massage” the sums

algebraically, and interpret them as Riemann sums. Then as
n → ∞, approximately a continuous optimization problem:

Maximize
√
n ·

∫ ∞

0
G(m(x)) dx,

subject to
∫ ∞

0
x · m(x) dx = 1.
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Maximum entropy

Maximize
∫ ∞

0
G(m(x)) dx,

subject to
∫ ∞

0
x · m(x) dx = 1.

Pretty easy! Can use Lagrange multipliers (continuous
“calculus of variations” version). Solve to find the optimizer,
m∗(x) = 1

e
π√
6
x
−1

, and plug in to get our final answer:

H(X) =
∑
k≥1

G(µk) ≈
√
n ·

∫ ∞

0
G(m∗(x))dx =

√
n · π

√
2
3 .

Look familiar? :)
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Maximum entropy

Recap: Wanted to find max entropy distribution X on partitions
with expected sum n. Hoped that p(n) ≈ eH(X).

We’ve approximated eH(X) ≈ eπ
√

2
3
√
n
. Correct exponential term

in Hardy-Ramanujan!

Method: Solve continuous optimization problem
(approximates

∑
with

∫
).

Can we make this less sketchy?

18



Maximum entropy

Wanted to find max entropy distribution X on partitions with
expected sum n. Hoped that p(n) ≈ eH(X).

Question: How close to the truth is this assumption?

Answer: For the maximizing distribution X, we have

p(n) = Pr[X ∈ P(n)] · eH(X).

“Reason”: compute directly from distribution.
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Maximum entropy

Magic fact
Let X = (X1, X2, ..., ) be given by a probability distribution
satisfying some set of constraints in expectation, and where
we’ve specified the support of the Xk’s (must be discrete). For
a wide variety of such constraints, if X is the entropy
maximizing distribution, we will have:(

# vectors satisfying
the constraints

)
= Pr[X satisfies constraints] · eH(X).

• “Just do it” – max entropy distribution will always have
independent Xk’s of a specified type.

• Use constraints + Lagrange multipliers to pin down
parameters, then compute directly from distribution.
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Maximum entropy

Recap: Wanted to find max entropy distribution X on partitions
with expected sum n. Initially hoped that p(n) ≈ eH(X).

We’ve approximated eH(X) ≈ eπ
√

2
3
√
n
.

Magic fact: p(n) = Pr[X ∈ P(n)] · eH(X).

Remaining questions:

• Error from
∑

→
∫
? 1

4√24n1/4
• What is Pr[X ∈ P(n)]? Probability that

∑
k≥1 k · Xk hits its

mean of n. Prove a (local) central limit theorem. 1
2 4√6n3/4

Multiply to get 1+o(1)
4
√
3n e

π
√

2
3
√
n. Hardy-Ramanujan!!
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Generalizations & related work

Asymptotic count known for many “flavors” of partitions of n,
e.g.,

• ≤ k parts (Szekeres, 1953 + others)
• ≤ k parts, difference ≥ d between parts (Romik, 2005)
• parts are kth powers (Wright, 1934 + others)
• ≤ k parts, each ≤ ℓ, “q-binomial coefficients” (e.g.
Melczer, Panova, and Pemantle, 2019, and Jiang and Wang,
2019)

Also, many papers studying the structure of a “typical”
partition (e.g. Fristedt, 1997)
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Generalizations & related work

Methods including:

• Circle method (many)
• Use results about “typical” partitions + prove a local
central limit theorem (e.g. Romik, 2005)

• “Physics stuff” (e.g. Tran, Murthy, and Badhuri, 2003)
• Large deviations (Melczer, Panova, and Pemantle, 2019)

No free lunch – usually some messy integrals.

Related: “counting via maximum entropy” e.g. for counting
lattice points in polytopes (Barvinok and Hartigan, 2010).
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Our result

Can use the “maximum entropy” approach for any of these:
becomes a constrained optimization problem with more
constraints. But many a slip ’twixt the cup and the lip...
(especially: local CLT)

As a “proof of concept”, we’ll count the following partitions:

Definition

Given a finite index set J ⊂ N, and a vector of positive
integers N = (Nj)j∈J, we say that a partition P has profile N if∑

x∈P
xj = Nj for all j ∈ J.
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Our result

Definition

Given a finite index set J ⊂ N, and a vector of positive
integers N = (Nj)j∈J, we say that a partition P has profile N if∑

x∈P
xj = Nj for all j ∈ J.

Write p(N) for the number of such partitions.

• “Unrestricted” partitions (J = {1})
• Partitions with fixed # of parts (J = {0, 1})
• Partitions of n into kth powers (J = {k} and n = Nk)
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Our result

Notation: For any index set J, and any β ∈ R|J|
+ , write

N = (Nj)j∈J = (⌊βjn(j+1)/2⌋)j∈J. Then define:

M(β) = maximum of
∫ ∞

0
G(m(x))dx,

subject to
∫ ∞

0
xj ·m(x)dx = βj, for all j ∈ J.

Main Theorem (M., Michelen, and Perkins, 2020?)

For any index set J, and any β ∈ R|J|
+ ,

p(N) = (1+ o(1)) eM(β)
√
n

c1(β) · nc2(J)

if N is “feasible”.
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Our result

Main Theorem (M., Michelen, and Perkins, 2020?)

For any index set J, and any β ∈ R|J|
+ ,

p(N) = (1+ o(1)) eM(β)
√
n

c1(β) · nc2(J)

if N is “feasible”.

• M(β)
√
n = entropy of max entropy distribution, after

approximating
∑

→
∫
. M(β) = solution to continuous

optimization problem (constant)
• c1, c2 constants.
• Other terms: error from

∑
→

∫
, and probability that max

entropy distribution hits P(N). (Local CLT – rest of talk)
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Local CLT

Local CLT (M., Michelen, and Perkins, 2020?)

X = (X1, X2, ...) a joint distribution of independent geometric
r.v.s with appropriate parameters. Write NX = (

∑
k≥1 kjXk)j∈J

(the profile of X). Then for any possible profile a ∈ NJ,

Pr(NX = a) ≈ 1a is “feasible”(
# integer-valued polys.

in some region ) · (PDF of Gaussian)

• Many impossible profiles a, e.g. a1 = (even) and
a2 = (odd).

• ⇒ Pr(NX = a) = 0 in many places
• ⇒ probability mass “piles up” on remaining points.
• Extra factor on remaining points (“feasible” points).
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Local CLT

Local CLT (M., Michelen, and Perkins, 2020?)

X = (X1, X2, ...) a joint distribution of independent geometric
r.v.s with appropriate parameters. NX = (

∑
k≥1 kjXk)j∈J. Then

Pr(NX = a) ≈ 1a is “feasible”(
# integer-valued polys.

in some region ) · (PDF of Gaussian)

Proof ideas:

• Want to understand PMF of NX, and know that NX is
defined in terms of sums of independent geometric r.v.s.

• Work with the characteristic functions of the Xk’s.
• Characteristic function = Fourier transform of PMF, so to
extract PMF from characteristic function: Fourier inversion.
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Local CLT

Local CLT (M., Michelen, and Perkins, 2020?)

Pr(NX = a) ≈ 1a is “feasible”(
# integer-valued polys.

in some region ) · (PDF of Gaussian)

Proof ideas:

• Fourier inversion gives Pr(NX = a) as a nasty complex
integral in terms of characteristic functions.

• Throw away regions that “obviously” don’t contribute
much.

• Green-Tao (2012): this leaves us with a neighborhood
around the coefficients of each integer-valued polynomial.

• On each neighborhood, approximate with a Gaussian.
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Overall recap

Recap:

• Max entropy approach gives # of partitions (with
restrictions allowed) as Pr[X ∈ P] · eH(X), where X = max
entropy distribution.

• eH(X) fairly easy to find! Leading constant in H(X) given by
a continuous optimization problem.

• Still no free lunch though: for lower-order terms, have to
approximate

∑
→

∫
error, and (more difficult) to find

Pr[X ∈ P], have to deal with nasty complex integral by
proving local CLT.
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Thank you!
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