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1 Introduction

The study of 3-manifolds lies at the heart of lowdimensional topology. Manifolds of
lower dimension have been classified. And there is no more work to be done, at least
not for a topologist. The study of 4-manifolds requires, most notably, more analytic
and geometric tools. the study of higher dimensional manifolds requires the full force
of algebraic topology.

These notes aim to introduce the student to the main topics in the study of
3-manifolds.

Definition 1.1. A n-manifold is a paracompact Hausdorff space M such that for each
point x € M there is a neighborhood U that is homeomorphic to R*. The dimension
of an n-manifold is n.

Example 1: The set S™ = {x € R*"!|||z|| = 1} is a n-dimensional manifold called
the n-sphere. Here S™ is a compact subset of R**! and thus necessarily paracom-
pact and Hausdorff. Stereographic projection provides a homeomorphism A : S™ —
{(0,...,0,1)} — R™. So any point € S™ such that z # {(0,...,0,1)} has the neigh-
borhood S™—{(0,...,0,1)} that is homeomorphic to R". To exhibit a neighborhood
of (0,...,0,1) that is homeomorphic to R” one may turn the idea of stereographic
projection on its head to provide a homeomorphism A’ : S™ — {(0,...,0,—1)} — R".
Thus S™ — {(0,...,0,—1)} is a neighborhood of (0,...,0,1) homeomorphic to R".

Example 2: The set 7" = S x --- x S' (n factors) is called the n-torus. The n-torus
may be viewed as a quotient space as follows: In R”, consider the group G generated
by translations of distance 1 along the coordinate axes. Then identify two points
z,y € R" if and only if there is a g € G such that g(z) = y. Given this description of
the n-torus it follows readily that it is a n-manifold.

Definition 1.2. A subset of a manifold M that is itself a manifold is called a sub-
manifold of M.

We will also consider a slightly larger class of objects:

Definition 1.3. (n-manifold with boundary) A n-manifold with boundary is a para-
compact Hausdorff space M such that for each point x € M there is a neighborhood



U that is homeomorphic to R or {(z1,...,z,) € R* | 2, > 0}. The dimension of an
n-manifold with boundary is n. The boundary of M 1is the set of all points that have
a neighborhood homeomorphic to {(x1,...,z,) € R* | z, > 0} but no neighborhood
homeomorphic to R*. The boundary of M is denoted by OM.

Our goal is to understand 3-manifolds. This turns out to be a difficult and perhaps
impossible task. In particular, it is far more difficult than classifying 2-manifolds.
Recall that 2-manifolds are classified by their Euler characteristic together with the
property of being or not being orientable. This information does not come close to
classifying 3-manifolds. As it turns out, every closed orientable 3-manifold, of which
there are many, in fact has Euler characteristic 0! To study 3-manifolds we must thus
develop more effective tools.

Exercise: Show that the boundary of a n-manifold is a (n-1)-manifold without bound-
ary.

2 Fundamental Results in 3-manifolds

Manifolds are studied in a variety of categories. The three main categories in which
manifolds are studied are the PL category, the differentiable category and the topo-
logical category. In the topological category, TOP, there is no additional structure
on a manifold save that in the definition. The maps considered between topological
manifolds are merely continuous. Two manifolds are equivalent if they are homeo-
morphic.

In the PL category we study triangulated manifolds (M, T'). Note that there is a
natural functor from PL to TOP given by (M,T) — M. In this category we consider
maps h : (M, 1) — (Ms,Ty) that correspond are simplicial maps from 73 to Tb.
Such maps are called PL maps. Unless otherwise noted, a submanifold (M’,T") of
a triangulated manifold (M, T) is required to have 7" be a subcomplex of T. A
PL homeomorphism is a P map that is also a homeomorphism and that has a PL
inverse. Two PL manifolds are equivalent if they are PL. homeomorphic.

In the DIFF category we study smooth manifolds. A map is smooth if it can
be differentiated infinitely many times. A diffeomorphism is a smooth homeomor-
phism. (The inverse function theorem implies that its inverse will also be smooth.)
In a smooth n-manifold M each point z € M is required to have a neighborhood
diffeomorphic to R® (or {(z1,...,Zn) | , > 0} in the case of a n-manifold with
boundary). In this category we consider smooth maps between smooth manifolds.
Two differentiable manifolds are equivalent if they are diffeomorphic.

Interestingly, these three categories coincide for 3-manifolds. For instance, every
topological 3-manifold admits a triangulation. (This gives a map from TOP to PL.)
Furthermore, given two triangulations of the same 3-manifold there is a PL homeo-
morphism between the two triangulations. Much of this work is due to R. H. Bing.
Similarly every differentiable 3-manifold admits a triangulation. (This gives a map
from DIFF to PL.) And there is a PL. homeomorphism between any two triangulations
arising in this way. Much of this work is due to E. Moise.

It must be mentioned that this equivalence of categories is not true in general.
This was first shown by Milnor. He exhibited examples of 7-spheres with distinct
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differentiable structures. A consequence is that there are also 7-sphres with distinct
PL structures. As far as I know it is unknown whether there are smooth structures
on S* that are not difftomorphic. A candidate for an “exotic” smooth structure on
the 4-sphere was given by Scharlemann. But much later it was proven by Akbulut
that this smooth structure is in fact diffeomorphic to the standard smooth structure
on the 4-sphere.

The advantage of the equivalence of the categories TOP, PL and DIFF for 3-
manifolds is that one may prove a theorem in the category that best suits the theorem.
In this chapter we will be working in TOP. In the succeeding chapters we will lay the
foundations for the PL category.

2.1 Irreducibility

As will be shown, there is such as thing as prime factorization for 3-manifolds. This
prime factorization is almost unique. The obstruction has to do with the more general
notion of irreducibility which we here define.

Definition 2.1. A 3-manifold M is irreducible if every 2-sphere in M bounds a 3-
ball.

The following theorem generalizes the well known Jordan Curve Theorem. The
smoothness assumption is necessary. This was shown by J.W. Alexander who ex-
hibited the Alexander horned sphere, a wildly embedded sphere in R® that does not
bound a 3-ball.

Theorem 2.2. (The Schionflies Theorem) Any smooth 2-sphere in R® bounds a 3-
ball.

A beautiful elementary proof of this theorem was given by Morton Brown in
1960. Students are encouraged to read this proof in the original. The following proof
appeared in a lecture series given by Andrew Casson in China in 2002. We include
it here because it illustrates some of the techniques employed in the contemporary
study of 3-manifolds. This is a DIFF proof. (It could be made into a PL proof, but
at the cost of clarity.)

Proof: Let S C R® be a smooth 2-sphere. Then S may be perturbed so that the
“height function” h : R® — R given by projection onto the third coordinate has a
finite number of maxima, minima and saddle points and no other critical points.

By the Poincaré-Hopf Index Theorem,
#mazima + #minima — #saddles = x(S%) = 2.

We prove that S bounds a 3-ball by induction on the number n of saddle points.

If n = 0, then S has one maximum and one minimum. It is thus isotopic to the
standard 2-sphere in R?® and hence bounds a 3-ball.

If n = 1, then there are two minima (one minimum, resp.), one maximum (two
maxima, resp.) and one saddle. There are two possibilities: (a “non nested” saddle
or a “nested” saddle) In both cases, S bounds a 3-ball.
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Suppose now that n > 2, and suppose that every 2-sphere in R? with less than n
saddles bounds a 3-ball. We may assume, after a small perturbation, that the saddles
do not all occur at the same level. Thus there is a level surface H such that there are
saddle points both above and below H. Now HN S is a compact 1-manifold (without
boundary), so H N S is a finite union of disjoint circles in H.

Let C' be an innermost component of H NS in H. It follows that there is a disk
D C H that meets S only in C. Here C separates S into two disks, Dy, Dy. Set
S1=DUD; amd Sy = DU D,. Then both S; and S, are piecewise smooth 2-spheres
in R?. They may be perturbed slightly to be smooth. There are two cases:

Case 1: If S; and S5 both have saddles, then each of them has less than n saddles.
Thus S; and S, both bound 3-balls in R3. It follows that S also bounds a 3-ball.

Case 2: If Sy, say, has no saddle, then S; bounds a 3-ball. We may thus isotope D; to
coincide with D and then further isotope D to eliminate the component C of HN S.
Now repeat the process with a new innermost circle. Since H was chosen so that
there were saddle points on either side of H, this process eventually leads to Case 1.

O

Corollary 2.3. R, the 3-ball and S3 are irreducible.

Here S? = R® U oo and the interior of the 3-ball is R3.
The same argument as above also gives the following theorem of Alexander.

Theorem 2.4. If T is a smooth torus in S, then one of the components of S\T has
closure homeomorphic to a solid torus S' x B2,

Proof: Let T C R?® be a smooth torus. Then T may be perturbed so that the
“height function” h : R* — R given by projection onto the third coordinate has a
finite number of maxima, minima and saddle points and no other critical points.

By the Poincaré-Hopf Index Theorem,

#mazxima + #minima — #saddles = x(torus) = 0.

We prove that 7" bounds a solid by induction on the number n of saddle points.
Note that since T is compact it contains at least one maximum and one minimuin.
The Poincaré-Hopf Index Theorem then implies that 7" has at least two saddles.

If n = 2, then T has one maximum and one minimum. A level curve of k|7 near
the maximum bounds a disk in the corresponding level surface of h. At the first
saddle, this disk is either

(1) pinched into two disks, or
(2) turns into a pinched annulus.
Between the two saddles a level surface intersects T correspondingly either
(1) in two non nested circles bounding disks or
(2) in two nested circles cobounding an annlus.

Below the second saddle, (near the minimum), a level curve of h|r again bounds a
single disk. Thus at the second saddle, either



(1) the two non nested circles bounding disks are wedged together or
(2) the annulus is pinched.
In both cases, these disks and annuli stack on top of each other to form a solid torus.

Suppose now that n > 3, and suppose that every torus in R® with less than n
saddles bounds a solid torus. We may assume, after a small perturbation, that the
saddles do not all occur at the same level. Thus there is a level surface H such that
there are saddle points both above and below H. Now HNT is a compact 1-manifold
(without boundary), so H N T is a finite union of disjoint circles in H.

Let C be an innermost component of H N'T in H. It follows that there is a disk
D C H that meets S only in C. There are two cases:

Case 1: C is separating in 7.

Let P;, P, be the surfaces obtained by cutting T along C. Since x(P;) is odd
(orientable surface with one boundary component), x(P;) < 2 and x(P;) + x(P) =
x(T) = 0, it must be the case that either P; or P, say P, is a disk and that the
other component, P,, is a punctured torus.

Set S; = DU P;. Then S is a piecewise smooth 2-sphere in R?® that can be
perturbed to be a smooth 2-sphere. It thus bounds a 3-ball. This 3-ball describes an
isotopy of P; into D. Thus T is isotopic to (T\P;) U D. If P; contained saddles, then
(T'\P,)UD is a piecewise smooth torus with fewer than n saddles. It can be perturbed
into a smooth torus with fewer than n saddles. Thus we are done by induction. If P;
contained no saddles, choose a new innermost component of (H N7T)\C.

Case 2: C is not separating in 7.

Here T\C' is an annulus A. We may color the portion of this annulus that lies
above H red and the portion that lies below H blue. Then every point in A is either
colored red, or colored blue, or lies on one of the circles in H NT. Just above C,
A is colored red. Just below C, A is colored blue. Thus there must be at least one
other component C' of H NT that is not separating in 7. We may assume that
this component is innermost. For if it is not, then we may either proceed as in Case
1 (if it contains an innermost separating component) or choose an innermost such
component (if it contains an innermost non separating component).

Now T\(C U C") consists of two annuli A;, Ay. Denote the disk in H\T bounded
by C by D and that bounded by C' by D. Set S; = A;uDUD" and S, = A,UDUD'.
Both S; and S, are piecewise smooth 2-spheres. Thus each of them bounds a 3-ball
on either side. Two of these 3-balls may be identified along D; and D, to form a
solid torus. O

The following is a notion related to irreducibility for manifolds with nonempty
boundary.

Definition 2.5. A 3-manifold M is boundary irreducible if every curve ¢ embedded
in OM that bounds a disk in M also bounds a disk in OM.

Exercise 1: Draw a picture of a piecewise smooth closed orientable surface S of genus
2 in R? so that neither component of R*\S is a 3-dimensional fattening of two circles
joined at a point. (Thus, the Schonflies Conjecture does not generalize to surfaces of
genus greater than or equal to 2.)



Exercise 2: Let M be a covering space of a 3-manifold M. Prove that M is irreducible
only if M is irreducible. (The converse is true but is more difficult to prove.)

Exercise 3: Use Exercise 2 to deduce that the three torus 72 is irreducible.

2.2 Primality

We wish to define a notion of primality for 3-manifolds. To do so, we need a few
auxiliarly definitions and theorems.

Definition 2.6. (Isotopy) A continuous function H : M x I — M such that H(,1) :
M — M is a homeomorphism for each t € I is called an isotopy.

Two submanifolds Sy, S1 of M are isotopic if there is an isotopy H : M x I — M
such that H(,0)|s, is the identity and H(,1)|s, : So — S1 is a homeomorphism.

The following two theorems are due to V.K.A.M. Guggenheim (in the PL cate-
gory). They are fundamental theorems in the study of 3-manifolds. We will need
these theorems in order for Definition 2.9 below to be well defined.

Theorem 2.7. Every orientation preserving homeomorphism of a n-ball or n-sphere
15 1sotopic to the identity.
Proof: 'The proof of this theorem is left as an exercise. O

Theorem 2.8. If By, By are n-balls in the interior of a connected n-manifold M,
then there is an isotopy f : M x I — M such that f(,0)|p, is the identity and
f(;1)p, : By = By is a homeomorphism.

Proof: 'The proof is left as an exercise. O

Definition 2.9. (Connected sum of n-manifolds) Given two n-manifolds My, M, we
may delete small open n-balls By from My and By from Ms. We may then identify
M; and M, along the resulting (n-1)-sphere boundary components. The resulting
n-manifold is called the connected sum of My and M, and denoted by Mi#M,.

Example: The genus 2 surface is the connected sum of two tori.

Definition 2.10. (Prime n-manifold) A n-manifold M is prime if M = M#M,
implies that either My or My is the n-sphere.

Exercise 1: Prove Theorem 2.7.

Exercise 2*¥*: Prove Theorem 2.8.



2.3 3-manifolds that are prime but reducible

In the context of irreducibility and primality, two 3-manifolds stand out. One of these
3-manifolds is S? x S'. The other, a twisted version of this 3-manifold, is defined
below.

Definition 2.11. Consider S? x I. Let a : S — S? be the antipodal map and let
f:8%x{0} — S*x {1} be defined by f(x,0) = (a(z),1). Then S*xS' is the quotient
space obtained from S? x I by identifying points via f.

Definition 2.12. A subset A of a connected set X is separating, if X\ A has at least
two components.

The 3-manifolds S? x S! and S?xS! contain non separating 2-spheres. Theorem
2.15 below shows that this is a rare property.

The following definition and theorem are fundamental theorems in the study of
3-manifolds. Proofs may be found in Chapter 4 of Rourke and Sanderson’s “Intro-
duction to PL topology”. (The proof for the analogous theorem in the differentiable
category can be found in Chapter 2 of Guillemin and Pollack’s “Differential Topol-

ogy”.)

Definition 2.13. Let M be a n-manifold. Let S be a submanifold of M of dimension
m. A regular neighborhood of S is a submanifold N(S) of dimension n such that for

each point x € S there is a neighborhood U of x in S and a neighborhood V' of x in
N(S) such that V =U x B*~™.

Examples

Theorem 2.14. Let M be a n-manifold. Let S be a submanifold of dimension m.
Then there is a reqular neighborhood N(S) for S in M. Any two regular neighborhoods
of S in M are isotopic. If both M and S are orientable, then N(S) is homeomorphic
to S x B"™™.

Theorem 2.15. An irreducible 3-manifold is prime. An orientable prime 3-manifold
is either irreducible or S? x S*.

Remark 2.16. More generally, a prime 3-manifold is either irreducible or S? x Stor
S?2x S, But we will not prove this fact here.

Proof: A connected sum of 3-manifolds contains a sphere that does not bound a
3-ball. Hence an irreducible 3-manifold is prime.

Suppose M is prime and let S be a 2-sphere in M. If S is separating, then M — §
has two components, N1, N,. If neither N; nor N, is a 3-ball, then M = N;#N, and
M is not prime. Thus either N; or N, is a 3-ball, i.e., S bounds a 3-ball.

If S is non separating, let NV (S) be a regular neighborhood of S'in M. Let M be the
3-manifold obtained by removing the interior of N(S) from M. Then OM = ON(S)
consists of two copies of S.

Let a be a point in S. Since S is non separating in M, there is an embedding
« : I — M with enpoints on the two distinct copies of @ in M. Then «(]) is a
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1-dimensional submanifold of M. Let N(a(I)) be a regular neighborhood of (1) in
M.

Let M be the 3-manifold obtained by removing teh interior of N(a(I)) from
M. Then OM is a 2-sphere S. Note that S is also a 2-sphere in M. Moreover,
in M, S is a separating 2-sphere. To one side of S is N(S) U N(«a(I)). Hence,
by the argument above, there must be a 3-ball to the other side of S. Therefore
M= N(S)UN(a(l)) U3 —ball = S?xS*. O

2.4 Incompressible Surfaces

In the study of surfaces, curves lying on the surface play an important role in the
cut and paste techniques that suffice to classify surfaces. Generalizations of these
techniques do not quite appear to suffice to classify 3-manifolds. Nevertheless, surfaces
lying in 3-manifolds provide some information about the 3-manifold. Not all surfaces
are interesting. We here discuss one of the more interesting classes of surfaces.

Definition 2.17. A submanifold S in a n-manifold M 1is properly embedded if 0S =
SNoM.

Definition 2.18. (Essential curve, essential arc) A curve c in a surface F' is essential
if it does not bound a disk in F.

An arc a properly embedded in a surface F' is essential if there is no arc 3 embedded
in OF such that o U (3 is a simple closed curve that bounds a disk in F'.

The following definitions generalize these notions.
Definition 2.19. A surface S embedded in a 3-manifold M is compressible if either
(1) S is a 2-sphere bounding a 3-ball in M; or
(2) there is a curve ¢ embedded in S that bounds a disk embedded in M but not in S.

A surface that is not compressible is called incompressible.
Example: T? C T3.

Definition 2.20. A surface S embedded in a 3-manifold M is boundary compressible
if there is an essential arc o properly embedded in S and an arc B properly embedded
in OM so that o U B form a simple closed curve that bounds a disk D in M with
DNS=a.

The following definition honors Wolfgang Haken who pioneered the study of in-
compressible surfaces and of normal surfaces.

Definition 2.21. An orientable irreducible 3-manifold that contains a 2-sided incom-
pressible surface is called a Haken 3-manifold.

Exercise 1: A closed curve in S? is necessarily homotopic to a point.

Exercise 2: A torus in S? is necessarily compressible.

Exercise 3: A connected incompressible surface S in a 3-ball B is either boundary
compressible or it is a disk.



3 Triangulated 3-manifolds

3.1 Simplicial Complexes

One approach to studying 3-manifolds involves the PL category. The following defi-
nitions provide the groundwork for this study. This section follows 4.1-4.3 in Singer
and Thorpe’s “Lecture Notes on Elementary Topology and Geometry” fairly closely.
There is a subtle but crucial departure from the traditional definition in Definition
3.6.

Definition 3.1. (Simplez; simplices) Let V' be a vector space over R. Let {vy, ..., vy}
be a linearly independent set of vectors. The (conver) set {agvg + - -+ + axvg|ag >
0,...,a; > O,Zfzo a; = 1} is called a k-simplex. 1t is denoted by |vo, ..., vx| or
simply by [s]. The set {agvg + - - + axvglag > 0,...,ax > 0, E?:o a; = 1} is called
an open k-simplex and denoted by (vo, ..., vx) or simply by (s). The dimension of a
k-simplex s k.

Definition 3.2. (Barycentric coordinates; barycenter) For v = agvg + - -+ + axvg,
{ag, ..., ar} are called the barycentric coordinates of v. The point k%lvo +---4+ k%lvk
is called the barycenter of [vo, - .., vk and denoted by b([vy, ..., vk])-

Remark 3.3. Note that b([vg]) = vo.

Definition 3.4. (Faces) The faces of [vg,...,vx] are the l-simplices of the form
[Vjo, - - -, 03], for 0 <1 <k and {vy,...,v;} alinearly independent subset of {vo, ..., vg}.

A 0-dimensional face of a simplex is also called a vertex. A 1-dimensional face of
a stmplex is also called an edge.

Remark 3.5. Note that [vy] = (vg). Le., a vertex is necessarily open.

Definition 3.6. (Simplicial complex) A simplicial complex K is a finite set of open
simplices such that

(1) if (s) € K, then all open faces of [s] are in K;
(2) if (s1), (s2) € K and (s1) N (s2) # 0, then (s1) = (s2).

The dimension of a simplicial complex K 1is the dimension of the highest dimen-

stonal simpler in K. We denote the set of points in the simplicial compler K by
K.

Example:

Remark 3.7. A simplex inherits a metric from the vector space in which it lies.
The distance between two points on a simplex is realized by a path with that length.
Note that a connected simplicial complex is path connected. This induces a natural
metric on a connected simplicial complex: the distance between two points on distinct
stmplices is the minimum length of a path between the two points.

Note that closed simplices are compact. It follows that a connected simplicial
complex is also a compact metric space. A simplicial compler K, and |K| too, is
topologized via the metric topology.



Definition 3.8. A triangulation of a n-manifold M is a simplicial complex K such
that K is homeomorphic to M. Given a n-manifold M with triangulation K, we call
the pair (M, K) a triangulated n-manifold.

Remark 3.9. For (M, K) a triangulated n-manifold, the homeomorphism between
M and K provides a natural identification of M and K. We may thus refer to “the
stmplices in M”.

Example: S?, 53
Example: T2, 73

Theorem 3.10. Every compact 1-manifold admits a triangulation. FEvery compact
2-manifold admits a triangulation.

The proof of the first part of the above theorem is an easy exercise in understanding
manifolds. The proof of the second part of the above theorem can be found for
instance in Massey’s “A Basic Course in Algebraic Topology”. The theorem below
is much harder to prove. It was proven simultaneously from two different points of
view.

Theorem 3.11. (R.H. Bing, E. Moise) Every compact 3-manifold admits a triangu-
lation.

Definition 3.12. (Subcomplex) A subcomplex of a simplicial complex K is a simpli-
cial complex L such that (s) € L implies (s) € K.

Definition 3.13. (r-skeleton) Let K be a k-simplex. Then for r < k, the r-skeleton
K" of K is the collection K™ = [(s) € K;dims < r].

Remark 3.14. The r-skeleton of a simplicial complex K is a subcomplez of K.

Definition 3.15. (General position) Let v € R* and let A C R*. The pair (v, A) is
in general position if v ¢ A and, for each ay,as € A with a; # as, [v, a1]N[v, as] = {v}.

Example:

Definition 3.16. (Cone) Let (v, A) be in general position. The set
UaEA[U: a’]
15 called the cone of v over A and denoted by v x A.

Definition 3.17. (Subdivision) A subdivision of a simplicial complex K is a simpli-
cial complex K' such that

(1) K| =[K'[;
(2) if (s) is an open simplex in K', then (s) is a subset of some open simplex of K.
Definition 3.18. (A partial ordering on simplices) Let K be a simplicial complet.

Define a partial ordering on K by (s1) < (s2) if and only if (s1) is a face of (s9). We
write (s1) < (s2) when (s1) < (s2) and (s1) # (s2)-
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Theorem 3.19. (Barycentric subdivision) Let K be a simplicial complex. Set

KD = {(b([50]), b([51]); - - -, b([s:])) | [s0], [51], - -+ [81] € K 3 [s0] < [s1] < - <[]}

Then KU is a subdivision of K.

Proof: 'The proof is left as an exercise. O
Example

Definition 3.20. The subdivision K of K is called the first barycentric subdivision

of K. The subdivision K™ = ((KM)M) .. )1 of K is called the n-th barycentric
subdivision of K.

Definition 3.21. The mesh of a simplicial complex K is the maximum of the diam-
eters of the simplices in K.

Theorem 3.22. (mesh decreases under subdivision) Let K be a simplicial complex
of dimension k. Then mesh K™ < ﬁmeshK.

Proof: 'The proof is left as an exercise. O

The upshot of the above two theorems is the following: Given a simplicial complex
K, consider the mesh of K. In certain situations, meshK may be larger than required.
To remedy this fact, we take barycentric subdivisions until the mesh of the resulting
subdivision is as small as required.

Definition 3.23. Let K and L be simplicial compleres. A map ¢ : K — L is a
simplicial map if
(1) for each vertex v of K, ¢(v) is a vertex of L;

(2) for each simplex (vy,...,vx) € K, the vertices ¢(vy),...,d(vx) all lie in some
closed simplex of L; and

(8) for p = agvy + -+ - + aqyu; € (8), d(p) = apd(vo) + - - - + ad(vy).
Examples

Definition 3.24. (Star) The star of v, for v a vertex of a simplicial complex K, is
the set

St(v) ={(s) € K | v € [s]}.

We denote the set of points in St(v) by |St(v)].
More generally, the star of a subcompler K' of K is the set

St(K') = {(s) € K | K' N [s] # 0}.

We denote the set of points in St(v) by |St(v)].

Definition 3.25. Let K, L be simplicial complezes and f : |K| — |L| a continuous
map. A simplicial map ¢ : K — L is a simplicial approxzimation to f if f(|St(v)|) C
|St(¢p(v))| for each vertex v of K.
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Theorem 3.26. Let K, L be simplicial complezes and f : |K| — |L| a continuous
map. Let {K,} be a sequence of subdivisions of K such that lim,_,.meshK, = 0.
Then, for n sufficiently large, f has a simplicial approximation.

Proof: 1t is an easy exercise (see Exercises 4 and 5) to show that {|St(w)|},cro is an
open covering of |L|. Tt then follows, since f is continuous, that {f~'(|St(w)|) }wero
is an open covering for the underlying set of |K|. Since the underlying set of K is
a compact metric space, the Lebesgue number lemma provides an ¢ > 0 such that
every ball of radius € lies in some open set of this covering.

Since limy, ,omeshK, = 0, we may choose N so that meshK, < 5 forn > N.
Hence for n > N and each v € K9, |St(v)| is contained in the ball of radius e based
at v. But by our choice of ¢, this means that |St(v)| C f(|St(w)]) for some w € L°.
Thus f(St(v)) C St(w). Define ¢ : K,, — L by first defining ¢|go : K — L° as
follows: For v € K?, choose ¢(v) to be any vertex w for which f(|St(v)| C |St(w).
There may be more than one choice, but there are at most finitely many such choices.
These choices guarantee that f(|St(v)|) C |St(¢(v))| for all v € KP.

Now extend @|xo : K? — L° to a simplicial map ¢ : K, — L via barycen-
tric coordinates. To see that this can be done, we must show that for each simplex
(vo, ..., vk) € K, the vertices ¢(vp), ..., d(vg) all lie in some closed simplex of L.
Consider a point p € (vg,...,vx). Then p € NF_(|St(v;)]. So f(p) € NE_y|St(d(v;:))]-
Thus N¥_,|St(¢(v;))| # 0. On the other hand, as each open simplex of L is either con-
tained in or disjoint from St(w) for w € L% Nk St(¢(v;)) consists of open simplicies.
Thus p € (t), for some open simplex (). Since () € Ny St(o(v;)), vo,---, vk € [t]-

Now extending ¢|xo : K? — L% to a simplicial map ¢ : K, — L linearly via
barycentric coordinates yields a simplicial approximation to f. O

Definition 3.27. (Closure) The closure of a simplicial complex or union of simplicies
L, denoted by L, is defined by L = {[s] | (s) € L}.

Definition 3.28. Consider a simplicial complex K. For v € K°, consider the star
St(v; KM) of v in the first barycentric subdivision of K. The link of v, denoted by

link(v), is defined by link(v) = St(v; KW)\St(v; KV).

Exercise 1: Let [s] = [vg,...,vx]. Prove that (vg,[v1,...,vk]) is in general position
and vg * [v1, ..., v = [s]-

Exercise 2*: Prove that K'Y is a subdivision of K. (Hint: Use induction on the
dimension of K and verify the two properties that characterize a simplicial complex.)

Exercise 3: Prove that for K a simplicial complex of dimension k, meshK(1) <
k

wyimeshK.

Exercise 4: Prove that St(v) is open.

Exercise 5: Prove that for a simplicial complex K, the collection {St(v)},exo is a

covering of the underlying set of K.

Exercise 6**: Prove that the link of any vertex of a triangulated 3-manifold is home-
omorphic to a sphere.
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3.2 Normal Surfaces

In the context of triangulated 3-manifolds the natural class of surfaces to consider
is that of so called normal surfaces. We shall see that incompressible surfaces can
be modified slightly to be normal surfaces. In this context, neither incompressible
surfaces nor normal surfaces are thought of being subcomplexes of the triangulations
of the 3-manifolds under consideration.

Definition 3.29. (Normal curve) An arc on a 2-dimensional face [f] of a 3-simplex
[s] is normal if its endpoints lie on distinct 1-dimensional faces of [f]. A closed curve
on the 2-dimensional faces of a 3-simplex [s| is a curve ¢ such that any component of
intersection of ¢ with a 2-dimensional face [f] of [s] is a normal arc.

Definition 3.30. The length of a normal curve c on the 2-dimensional faces of a
3-simplez [s] is the number of points in c M |[s]*|.

Lemma 3.31. A normal curve on the 2-dimensional faces of [s] either has length 8
or 4 or it meets some edge more than once.

Proof: Here |[[s]?| is homeomorphic to a sphere. Thus ¢ is a Jordan curve on the
sphere. It thus separates |[s]?| into an “inside” (disk) and “outside” (disk). Consider
|[s]°|]. It consists of four points. Up to renaming, there are two possibilities. The
“inside” of ¢ contains either one or two points of |[s]°|.

Suppose that the “inside” of ¢ contains only the vertex v. Let e, es,e3 be the
edges incident to v. Then ¢ must intersect ey, ey, e3. Furthermore, since the other
vertices to which eq, es, e3 are incident lie “outside” of ¢, ¢ must intersect ey, eo, e3 an
odd number of times. Similarly, it must meet the other three edges an even number
of times. Thus if ¢ meets no edge more than once, then ¢ has length 3.

Suppose now that the “inside” of ¢ contains the verticies v1,v,. Then there are
four edges that are met an odd number of times and two edges that are met an even
number of times. If the former edges each meet ¢ once and the latter are disjoint
from ¢, then ¢ has length 4. O

Definition 3.32. (Normal disk) A normal triangle in o 3-simplex [s] is the link of
any one of the vertices of [s] in the first barycentric subdivision of [s]. A normal
quadrilateral in a 3-simplex [s] is the link of any one of the edges of [s| in the first
barycentric subdivision of [s]. Normal triangles and quadrilaterals are called normal

disks.

Definition 3.33. (Normal surface) Let (M, K) be a triangulated 3-manifold. A nor-
mal surface in M is a surface S C M such that for any 3-simplez [s] in K, SN |[s]|
consists of disjoint normal disks in [s].

Example 1: A normal sphere in S3.

Example 2: A normal torus in 7.

Remark 3.34. Let M be a n-manifold containing a k-dimensional submanifold K
and an l-dimensional submanifold L. We will always assume, unless stated otherwise,
that KNL is a (possibly empty) (k+I-n)-dimensional submanifold of M. Furthermore,
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if K and L are compact, we will always assume that K N L is also compact. These
properties are quaranteed by general position. For the formal definition of general
position, and for the proof of the fact that general position can always be guaranteed
by a small isotopy, see Chapter 5 of Rourke and Sanderson’s “Introduction to PL
topology”. (For the analogous defintion and theorem in the differentiable category,
see Chapter 1 of Guillemin and Pollack’s “Differential Topology”.)

Definition 3.35. The weight of a surface S in a triangulated 3-manifold (M, K) is
the number of components of S N K'. It is denoted by w(S). Similarly, m(S) is the
number of components of SN (K?\K").

Theorem 3.36. Let M be an irreducible 3-manifold containing an incompressible
surface S. Then for any triangulation (M, K) of M there is an isotopy that takes S
to a normal surface in (M, K).

Proof: Let (M, K) be a triangulation of M and let S be an incompressible surface
in M. Isotope S so that (w(S),m(S)) is minimal (in the dictionary order). The
minimality of w(S) implies that for each 3-simplex [s] in K, S meets the 2-dimensional
faces of [s] in a finite number of disjoint normal arcs along with simple closed curves
entirely contained in the open 2-dimensional faces.

Let (f) be a 2-dimensional face of [s] € K and suppose that S N |[f]| contains a
simple closed curve s. Further assume that s is an innermost such curve in |[f]|. Then
s bounds a disk D in |[f]| that meets S only in its boundary. Since S is incompressible,
it follows that s also bounds a disk D' in S. Since D is disjoint from S away from
s = 0D, DU D' is a 2-sphere. Since M is irreducible, D U D' bounds a 3-ball. It
follows that D’ can be isotoped to coincide with D. A further isotopy then eliminates
the component s of SN7T2. This contradicts the minimality of (w(S), m(S)). Thus for
each 3-simplex [s] in K, S meets each face (f) of [s] in normal arcs. Hence SN J|[s]|
is a finite number of disjoint normal curves.

Let [s] be a 3-simplex in K. Let ¢ be a normal curve in S N d|[s]|. Let S be
the component of S N |[[s]| such that ¢ € 3S. Since ¢ bounds a disk E in the 3-ball
|[s]], it must in fact bound a disk £ in S. Here E U E is a 2-sphere in an irreducible
3-manifold and hence bounds a 3-ball B. A priori £ may not be disjoint from S. But
the procedure in the above paragraph shows how to eliminate curves on intersection
in SNE.

If E does not lie entirely in |[s]|, then B describes an isotopy lowering (w(S), m(S)),
a contradiction. Thus S = E. In particular, S is a disk.

Suppose that S meets an edge [e] of [s] more than once. Since S is a disk in the
3-ball |[s]|, it is isotopic to one of the disks bounded by S in d|[s]|. In particular,
there is a disk E' such that 0E' = a U 3 with o C S and 3 C 9|[s]| and such that E'
is disjoint from S\c. But this contradicts the minimality of w(S).

It now follows from Lemma 3.31 that S has length 3 or 4. Thus 95 is a normal
disk. Hence S has been isotoped to be a normal surface. O

Exercise 1: Choose a triangulation (S3, K) of S® and give an example of a normal
surface in (S3, K).

Exercise 2: Consider the following “converse” of Theorem 3.36: A normal surface in
a triangulated 3-manifold is incompressible. Is this true or false?
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3.3 Diophantine Equations and Inequalities

Normal surfaces are described by vectors whose entries satisfy certain integral equa-
tions and inequalities. Specifically, note that in a given 3-simplex there are exactly
four types of normal triangles and exactly three types of normal quadrilaterals. Thus
to describe a given normal surface, we need only indicate how many of which type
of normal triangle and normal quadrilateral occur. Hence if t is the number of 3-
simplices in a triangulated 3-manifold, then a normal surface is completely described
by a vector with 7t entries.

Given two normal surfaces S;,S; and corresponding vectors v, s, we wish to
define the sum S; + Sy corresponding to #; + #5. This is in principle possible, but
there is one obstruction. On a face of a 3-simplex, we may see two intersecting
normal arcs. (In the 3-simplex, we may be able to isotope these apart, but note that
the surface connects up to other normal pieces, so the isotopy may not allow us to
make any progress globally.) Changing + to is called a regular switch.

If in a given 3-simplex, two normal triangles intersect, the regular switches on the
faces of the 3-simplex extend into the 3-simplex. Similarly, if in a given 3-simplex,
a normal triangle and a normal quadrilateral intersect, the regular switches on the
faces of the 3-simplex extend into the 3-simplex. If in a given 3-simplex, two normal
quadrilaterals intersect, the regular switches on the faces of the 3-simplex extend
into the 3-simplex only if the two quadrilaterals are of the same type. If the two
quadrilaterals are of different types, the regular switches on the faces of the 3-simplex
do not extend into the 3-simplex.

Definition 3.37. Two normal surfaces S1,So in the triangulated 3-manifold M are
said to satisfy the square restriction if for every 3-simplex o in M, at most one type
of quadrilateral occures in (S; U Ss) N |o].

It follows that S; + S is well defined for pairs of surfaces satisfying the square
restriction.

Given a normal surface S, the normal triangles and quadrilaterals that constitute
S match up along the faces of adjacent 3-simplices. Thus the vector ¥ corresponding
to S satisfies 2t glueing equations, i.e., AU = 0 for some integral matrix A. More
generally, if we wish to check whether or not the given 3-manifold contains a normal
surface, we may do so by checking whether or not Av = 0 has non negative integral
solutions that satisfy the square restriction. This type of system of linear equations
is called a Diophantine system of equations.

Theorem 3.38. Let Ax = 0 be a Diophantine system of equations. Then there is
a finite set of non negative solutions which generates the full set of all non negative
solutions to the Diophantine system of equations.

Proof: Here A is an m x n-matrix. We consider Z" C R". Set Y = {y € R*|y >
O0andAy = 0}. Note that each of the rows of A defines a hyperplane through the
origin. Thus Y lies in the intersection of these m hyperplanes. The intersection of
these hyperplanes is a subspace V of R” of dimension d at least n - m. So Y is the
intersection of this subspace with the first quadrant of R". In particular, Y is convex.
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Now consider the hyperplane H defined by
r1+--4z,=1.

Then H NY is a convex set that is the convex hull of a finite set of points C.

Let y € C. Tt is not hard to see (by considering Gauss Jordan elimination), that
the entries in y are rational. Thus if we multiply y by the least common multiple of
the denominators of its entries, we obtain an integral point . Let C' be the collection
of integral points thus obtained. Note that C’ also represents a set of vectors that
spans V.

Consider the “parallelogram”

P'={) tealt, € [0,1]}.

zeC’!

Then P’ is compact. Thus the set L = P' N Z" is a finite number of points. Here
L is a finite set of non negative solutions of Az = 0. It remains to show that L
generates the full set of non negative integral solutions of Az = 0.
Let z € Y. Then for some z,...,2; € C' and some ay,...,0; € R, 2 = a121 +
-+ 4+ az;. But then z — ([a1]@1 + -+ - + [a]z;) € P’ and all entries of z — ([a1|z1 +
-+« + [ay]x;) € P' are differences of integers, hence themselves integers. Thus z =
z— (la1]zy + - - - + [@]z)) + ([e1]z1 + - - - + [a]zy). e, z is generated by C'.
]

Corollary 3.39. There is an algorithm to detect whether or not a 3-manifold con-
tains an incompressible surface.

Exercise 1*: Consider the 3-manifold described at the end of Section 3.5. Give a
triangulation of this 3-manifold and write down the system of Diophantine linear
equations for this 3-manifold.

Exercise 2*: Does the set of fundamental solutions for Exercise 1 contain a 2-sphere?

3.4 2-spheres

Normal surface theory may be used to study 2-spheres in 3-manifolds. In particular, it
allows us to lay the foundation for prime decompositions of 3-manifolds. The crucial
step is a result due to H. Kneser, proven in 1929.

(A quick google search reveals: Hellmuth Kneser, born 1898, Ph.D. 1921 on Quan-
tum Field Theory, with David Hilbert, at the Georg-August-Universitat Gottingen.
Instructor at Georg-August-Universitat Gottingen 1921-1925, chair at Greifswald
1925-1937, chair at Tiibingen from 1937 (?!) until his death in 1973.)

Definition 3.40. A punctured 3-sphere is a 3-manifold homeomorphic to S\ (finite
unton of 3-balls.

Let S = 51 U ---U S be a disjoint union of 2-spheres in a 3-manifold M. We
say that S is an independent set of 2-spheres if no component of M\S is a punctured
3-sphere.
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Example: If M = M # ...# M, and M; # S3 for all 4, then M contains an indepen-
dent set of k — 1 2-spheres.

Theorem 3.41. (Kneser’s Theorem) Suppose (M, K) is an orientable triangulated
3-manifold. Suppose further that K contains t 3-simplices. If M contains an inde-
pendent set of k 2-spheres, each of which is separating, then k < 6t.

More generally, Kneser proved that if (M, K) is a triangulated 3-manifold with
t 3-simplices, then an independent set of £ 2-spheres in M must have &k < 6t +

We first prove a lemma:

Lemma 3.42. If M contains an independent set of k 2-spheres, each of which is
separating, then for any triangulation (M, K) of M, (M, K) contains an independent
set of k normal 2-spheres.

The proof of this lemma is very similar to the proof of Theorem 3.36. The im-
portant differences are that (1) M may be reducible and (2) 2-spheres cannot be
incompressible.

Proof: Let (M, K) be a triangulation of M. Choose a set S = S; U--- L S of k
independent 2-spheres such that (w(S), m(S)) is minimal.

The minimality of w(S) guarantees that for each 3-simplex [s] € K and each face
(f) of [s], SN |(f)| consists of normal arcs and simple closed curves. Suppose that
SN |(f)| contains simple closed curves and let ¢ be an innermost such curve. Then ¢
bounds a disk D that meets S only in its boundary. Let S; be the component of S
containing c. Furthermore, ¢ cuts S; into two disks, D’ and D". Set S} = DU D’ and
Sl'=DUD". Set S' = (S\S) LIS and S" = (S\S) Sy

Claim: Either S’ or S” is independent.

Suppose that both S’ and S” are not independent. Then S] meets a punctured
3-sphere B’ and S! meet a punctured 3-sphere B”. Suppose that S; is contained,
say, in B’. Then the 2-sphere S; cuts the punctured 3-sphere B’ into two punctured
3-spheres, By, B;. One of these punctured 3-spheres, say By, has S, C 0B;. The
other, By, does not meet S and hence is a component of M\S. (This is where we use
the hypothesis that S; is separating.) But this contradicts the independence of S.

Thus here B and B"” meet along D. Hence B’ Up B"” forms a punctured 3-sphere
B in M\S. But this also contradicts the fact that S is independent. Thus either S’
or S” is independent.

Suppose S’ is independent. Then, after a small isotopy near D that eliminates
the component ¢ of SN |(f)|, (w(S"),m(S")) < (w(S),m(S)). But this contradicts
the minimality of (w(S), m(S)). Thus for each 3-simplex [s] € K and each face (f)
of [s] the intersection S N |(f)| consists of normal arcs.

Now suppose [s] € K is a 3-simplex and S a component of S N [[s]|. We wish
to show that S is a disk. Let & be a component of 8S. Then ¢ bounds a disk D in
|[s]|. The paragraphs above show how to eliminate components of S N D. Thus we
may assume that D meets S only in & Let S; be the component of S containing ¢.
As above, ¢ cuts S; into two disks. Here S is contained in one of these disks. The
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paragaphs above show that S cannot be properly contained in that disk, for that
would contradict the minimality of (w(S), m(S)). Thus S is a disk. The final two
paragraphs of the proof of Theorem 3.36 now show that S is normal.

O

Proof:  (Of Kneser’s Theorem) Suppose M contains a set of k independent 2-spheres
with £ > 6. By Lemma 3.42 M contains a set S = 57 L --- LU Sk of k£ independent
normal 2-spheres.

Let [s] be a 3-simplex in K. A component of J|[s]|\S is “good” if it is an annulus
that contains no point of |[s]°|. At most six components of 9|[s]|\S are “bad”. (Here
SN |[s]| contains at most one type of normal quadrilateral. If, in addition, it contains
all types of normal triangles, there will be six “bad” components. Otherwise, there
will be fewer “bad” components.)

A component X of M\S is “good” if every component of X N J|[s]| is good, for
every 3-simplex [s] € K. At most 6t components of M\S are “bad”.

If £ > 6t, then M\S has at least 6t + 1 components. Thus there are is at least
one “good” component. A “good” component is made up of regions homeomorphic
to (triangle) x I and (quadrilateral) x L. It is a nontrivial fact that then X = 2-sphere
x L. (This is true because S is an orientable surface in an orientable 3-manifold. It is
related to the fact that for an orientable surface in an orientable 3-manifold a regular
neighborhood is homeomorphic to a product.) But this is a contradiction. Hence
k < 6t. O

The above proof also proves the following theorem:

Theorem 3.43. (Haken’s Theorem) Suppose (M, K) is an orientable triangulated
3-manifold. Suppose further that K contains t 3-simplices. If M contains a set of
surfaces F = Fy U --- U Fy, such that no component of M\F is homeomorphic to
(surface)x I, then k < 6t.

A similar result holds if M is not orientable. Actually, Haken used the bound 61t.
Many arguments for this theorem have been given. The bound has improved over
time. Combined the two theorems above are known as Kneser-Haken finiteness.

Exercise 1: Calculate the fundamental group of the three torus.

Exercise 2: List five subgroups of the fundamental group of the three torus corres-
ponding to distinct isotopy classes of incompressible surfaces in the three torus.

Exercise 3: Try to generalize Haken finiteness to the case of incompressible surfaces
with boundary properly embedded in 3-manifolds with boundary. Caution: There is
a hypothesis that must be added in order to make the more general statement true.

3.5 Prime Decompositions

We here show that every 3-manifold has a prime decomposition that is unique up to a
reordering of its factors. The existence of such a decomposition follows from Kneser’s
Theorem:
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Theorem 3.44. Fach compact orientable 3-manifold can be expressed as a connected
sum of a finite number of prime factors.

Proof: Let M be a compact 3-manifold and let (M, K) be a triangulation of M. If
M contains a non separating 2-sphere, then by the proof of Theorem 2.15 this non
separating 2-sphere in a compact 3-manifold M gives rise to a separating 2-sphere.
This separating 2-sphere either bounds a 3-ball or splits off a summand R that is
either S? x S* or S?xS*. Thus M = M'#R. If there are non separating 2-spheres in
M*, we may repeat this process. But note that if we repeat this process k times, then
M = M*4R\# ... #R;, with M* R; # S®. Thus M contains a independent set of k
2-spheres. Hence by Kneser’s Theorem for ¢t the number of 3-simplices in K, k < 6t.
Thus M has only finitely many summands homeomorphic to S? x S* or S2x 1.

Similarly, if M* contains a separating 2-sphere splits M* into a connected sum. If
the summands contain separating 2-spheres, then these 2-spheres split the summands
into connected sums. Thus M = Mi# ... Mi#R:# ... #Ry, with M;, R; # S*. There-
fore M contains a set of k + [ independent 2-spheres. It follows that £ +1 < 6t. [O

The analogous theorem holds for non orientable 3-manifolds. We write prime
decompositions as M = Mi# ... M,. Consider the case of a connected sum of four
3-manifolds M, ..., M,. We may take the connected sum by removing three small 3-
balls from M;, one small 3-ball from M,, M3, M, and identifying the resulting bound-
ary components of M; with those of My, M3, My. However, the “linear” notation
would not make sense. Consider the 2-spheres S, .Ss, 53 in M which result from the
(pairwise identified) boundary components of M; and M,, M3, My. We may isotope
them in M, to lie inside another 2-sphere S, that cobounds, together with S; LS5 1S3
a four times punctured 3-sphere. Inside this four times punctured 3-sphere we con-
sider another 2-sphere S, that separates S; and S; from S, and Ss. Replace S; by S;
and S, by S,. Then S; U Sy LI S3 cuts M into a once punctured copy of M, together
with a twice punctured copy of M, along with a twice punctured copy of M3 and a
once punctured copy of M. Furthermore, the once punctured copy of M; meets the
twice punctured copy of M,. In addition, the twice punctured copy of M meets the
twice punctured copy of Ms;. Which, in addition, meets the once punctured copy of
M,. Thus the connected sum can be described as M = M #My# Ms#M,.

Theorem 3.45. Let M be a compact orientable 3-manifold. If M = M # ... # M, =
Ni1# ... N, then k =1 and, after reordering, M; = N;.

We first prove a lemma:

Lemma 3.46. Let X be a non separating and S a separating 2-sphere in a 3-manifold
M. Let ¢ be an innermost component of >N S in S. Let D be the disk bounded by c
in S that meets ¥ only in ¢ and let D', D" be the two disks into which ¢ separates X.
Set Y =DUD" and X" = DU D". Then either X' or X" is non separating.

Proof: Since X is non separating, there is a simple closed curve a in M that meets
> exactly once. After an isotopy, if necessary, we can ensure that o does not meet D.
Then the number of points in (¢ NX')U (eNX”) is exactly one. We may assume that
this point is in N X'. Now the existence of the simple closed curve « that meets ¥/
in exactly one point shows that ¥’ is non separating. O
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Proof: (Of the Uniqueness Theorem) Suppose first that M contains no non separating
2-sphere. It then follows that each M, and each N; is irreducible. Let S = S; U ---1
Sk_1 be a set of 2-spheres such that M\S = M; % U--- L Mg, where M;* is a
punctured copy of M; for i = 1,...,k, Furthermore, let ¥ be a 2-sphere such that
M\Y = Ny « UM', for Ny* a once punctured version of Nj.

We may assume that both ¥ and S have been chosen so that #[3N S| is minimal.
Suppose that 3 NS # (). Let ¢ be an innermost component of ¥ N S # @) in . Then
c cuts out a disk D in 3 that meets S only in its boundary c. In particular, D C M;*
for some j. Let S; be the component of S containing c.

Here ¢ cuts S; into two disks, D', D". Set S’ = DU D', §” = DU D". Recall that
we are assuming that A is irreducible. Thus S’, S” bound 3-balls B', B" in M. Since
M; is not S®, it must be the case that either B’ C B" or B" C B', say B' C B". Then
we may set S;x = S” and Sj* = S; for j # i. Then S% =Sy - -- U Sg_1* also has
the property that M\Sx is the disjoint union of punctured copies of M, ..., M} and
#|ENS*| < #|XNS|. But this contradicts our choice of ¥ and S. Thus XN S = ().

Suppose now that a component of S, say S;, lies in Ny*. Since N is irreducible,
S; bounds a 3-ball in N;. On the other hand, since S; is essential in M, it does not
bound a 3-ball in M and hence does not bound a 3-ball in N;*. It follows that .S
bounds the once punctured 3-ball in N;* containing ON;* = X. But this means that
S is isotopic to X. Hence a component of M\S homeomorphic to Ni*. Thus after
reordering, M; = N;.

If no component of S lies in Ny*, then Nyx C M;x for some [. In particular,
> C My*. Then similarly, since M; is irreducible, ¥ bounds a 3-ball in M;. On the
other hand, since ¥ is essential in M, it does not bound a 3-ball in M and hence
does not bound a 3-ball in M;*. It follows that S; bounds a punctured 3-ball in M;x*.
Since no component of S lies in Ny*, S; in fact bounds a punctured 3-ball whose
punctures are bounded by the components of S that meet M;*. But this means that
M; is homeomorphic to N;. Thus after reordering, M; = Nj.

Now suppose that M contains a non separating 2-sphere S. Let S be as above.
We may assume that S is chosen so that #[S N S| is minimal.

We proceed as in the argument above. Suppose that Sns # (0. Let ¢ be an
innermost component of S NS in S and let D be the disk bounded by ¢ in S that
meets S only in its boundary c¢. Here ¢ separates S into two disks D', D". Set
S'=DuD',S"=DuD". By Lemma 3.46 either S’ or S”,say S’, is non separating.
Furthermore #|5'N S| < #|S N S|. But this contradicts the assumed minimality.
Thus SN S = 0.

It follows that for some 4, M; = S? x S'. Similarly, we may show that for some j,
N; = S x S'. Thus after reordering, M; = N;.

]

For non orientable 3-manifolds prime factorizations are not unique. More specif-
ically, if M is non orientable and M = M;#(S? x S') then it is also the case that
M = M,#(S?xS*') and vice versa. However, this prime factorization becomes unique
if we decree that reducible prime summands for non orientable 3-manifolds always be
S2x St

To understand the lack of orientability of a 3-manifold in purely topological terms
note that a 3-manifold is non orientable if and only if it contains a submanifold
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homeomorphic to (Mdbius band)xI.

The Mobius band can be thought of as a twisted I-bundle over the circle. In
particular, he circle is orientable but the Mobius band is not. Twisted I-bundles
are interesting when considering the question of orientation. The projective plane is
not orientable, but the twisted I-bundle over the projective plane is orientable. Its
boundary is a 2-sphere.

3.6 Fundamental 2-spheres and projective planes

In this section we consider algorithmic questions. In particular, we are interested in
recognizing certain features of a 3-manifold in a finite number of steps. Any feature
of a 3-manifold that can be translated into the existence of some type of fundamental
normal surface can be recognized in this sense.

Definition 3.47. A 2-sphere in a 3-manifold is essential if it does not bound a 3-
ball. A surface F in a 3-manifold M is boundary parallel if it cuts off a 3-manifold
homeomorphic to F x I from M. A disk in a 3-manifold is essential if it is not
boundary parallel. A surface F' not equal to a 2-sphere or disk in a 3-manifold M is
essential if it is incompressible and not boundary parallel.

So far we have always considered embedded surfaces. But occasionally we also
wish to consider immersed surfaces. An immersion is locally an embedding, but not
globally. L.e., an immersed surface is a surface with self intersections. By isotoping an
immersed surface into general position, we arrange that the self intersections consist
of double curves and isolated triple points. Deep results on general position guarantee
that this is possible.

Lemma 3.48. Suppose that F' is a connected normal surface in the 3-manifold M.
Further suppose that F = G + H, for G, H normal surfaces in M and that G, H are
chosen so that the number #|G N H| is minimal. Then G and H are connected.

Proof:  Suppose that H = H, LU Hy. Set G' = G+ H,. Then F = G+ H =
G + H, + Hy = G' + H,. Here the components of G N H consist of the components
of G N H, together with the components of G N Hy. Since F' is connected, neither of
the latter two sets are empty. Thus #|G' N Hy| < #|G N H|. But this contradicts
minimality. Thus G, H are connected. O

Theorem 3.49. If the 3-manifold M contains an essential 2-sphere or projective
plane, then it contains a fundamental 2-sphere or projective plane.

Proof: Let F' be the 2-sphere or projective plane. By proceeding as in Lemma 3.42
we may arrange for F' to be normal. We may also assume that w(F) is minimal
among all normal 2-spheres and projective planes in M.

Suppose F'is not fundamental. By Lemma 3.48 there are connected normal sur-
faces G, H such that F = G+ H, w(G) > 0,w(H) > 0, w(F') = w(G) + w(H), and
X(F) = x(G) + x(H).

Case 1: x(F) =2, i.e., F is a 2-sphere.
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Up to renaming of G, H, there are only two possibilities: 1) x(G) = 2 and x(H) = 0;
or 2) x(G) =1 and x(H) = 1. Thus G is either a 2-sphere or projective plane and
w(@) < w(F), contradicting minimality.

Case 2: x(F) =1, i.e., F is a projective plane.

Up to renaming of G, H, there are only two possibilities: 1) x(G) = 2 and x(H) = —1;
or 2) x(G) =1 and x(H) = 0. Thus G is either a 2-sphere or projective plane and
w(G) < w(F), contradicting minimality.

Thus M contains a fundamental 2-sphere or projective plane. O

Corollary 3.50. There is an algorithm to decide whether or not a 3-manifold con-
tains an essential 2-sphere or projective plane.

In a similar vein, though necessarily though much harder work, Haken proved the
following theorem:

Theorem 3.51. (Haken) If the 3-manifold M contains and essential disk and con-
tains no projective planes, then it contains a fundamental disk.

The application he had in mind was:

Corollary 3.52. There is an algorithm to decide whether or not a knot K C S3 is
the unknot.

Proof: Let n(K) be an open regular neighborhood of K and set C(K) = S3\n(K).
We need only show that a knot is the unknot if and only if C'(K) contains an essential
disk.

If K is the unknot, then K bounds a disk in S®. This disk restricts to an essential
disk in C(K). Conversely, suppose there is an essential disk D in K. Then 9D is a
torus knot on OC(K). Let N(K) be the closure of n(K). Consider the union of N(K)
with the regular neighborhood N (D) of D. Then the boundary of N(K)UN(D) is a
2-sphere in S3. Thus by the Schonflies Theorem, it bounds a 3-ball. Since it does not
bound a 3-ball on the N(K) U N (D), it bounds a 3-ball on the other side. We may
use this description to calculate the fundamental group of S3. Use the Seifert-Van
Kampen Theorem. We obtain 7;(S®) =< z|z? >, where ¢ is the number of times
that 0D wraps around K on ON(K). But this tells us that ¢ = 1. Thus the disk D
extends, along an annulus in N(K) to a disk bounded by K in S3. O

4 Haken 3-manifolds

This chapter is an overview of the work that has been accomplished following Haken’s
general program. Recall that the classification of surfaces is accomplished by cutting a
surface along essential arcs into simpler and simpler pieces. Haken’s general program
proceeds along the same lines. We here discuss the key ingredients of this program
along with its main result and limitations.
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4.1 The Loop Theorem

The precursor of what is now known as the Loop Theorem was first claimed by Max
Dehn in 1910 and is therefore known as Dehn’s Lemma.

Theorem 4.1. (Dehn’s Lemma) Suppose M is a 3-manifold and f : D — M a map
from the disk into M. If for some neighborhood U of 0D, f|y is an embedding then
flap extends to an embedding.

This innocuous statement turns out to be very hard to prove. Dehn’s original
argument was found to be incomplete, as was pointed out by Kneser in 1927. (Dehn
never got around to giving a complete proof of this theorem. He was fired from his
position at Frankfurt in 1933 and took on a teaching position at Black Mountain Col-
lege in North Carolina that left him little time for research. Dehn found life at Black
Mountain College, a progressive institution, even by today’s standards, extremely
gratifying and turned down offers from more research oriented institutions.)

A proof of this theorem was given by Christos Papakyriakopoulos in 1957. In this
proof, Papakyriakopoulos employed what came to be known as a “tower construc-
tion”. In this construction, Papakyriakopoulos considered a sequence of 2-fold covers
of a regular neighborhood of an immersed disk. Very roughly, this sequence allowed
a removal of triple points in the immersed disk. At the top of the tower he found
an immersed disk with now triple points. Standard cut and paste operations allowed
him to obtain an embedded disk at the top of the tower which could then successively
be projected down one step at a time.

The following quintuplet is due to John Milnor:
“The perfidious Lemma of Dehn,

put many a man to shame.

But Christos Pap-

akyriakop-

oulos did it without any pain.”

The tower construction also allowed Papakyriakopoulos to prove two other theo-
rems that he called the Loop Theorem and the Sphere Theorem. Below is a general-
ization of the Loop Theorem formulated by John Stallings:

Theorem 4.2. (The Loop Theorem) Let M be an 3-manifold and F a connected
surface in OM. If N is a normal subgroup of m(F) and if ker(m(F) — m(M))—N #
0, then there is a proper embedding g : (D,0D) — (M, F) such that [g|ap] is not in
N.

The case of most interest in our further discussion is the case in which N =< 1 >.

Theorem 4.3. (The Sphere Theorem) Let M is an orientable 3-manifold and N a
71 (M)-invariant subgroup of mo(M). If mo(M) — N # (), then there is an embedding
g :S? — M such that [g] is not in N.

Exercise 1: The contrapositive of the Loop Theorem with N =< 1 > states that if a
surface F' in a 3-manifold M is incompressible, then 7y (F) — 7 (M) is injective. Is
the converse true?
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Exercise 2: Let I’ be a compact surface without boundary. List all incompressible,

boundary incompressible surfaces (those with and those without boundary) in M =
F x1I.

4.2 Hierarchies

A hierarchy provides a way of cutting certain 3-manifolds into simpler pieces.
Definition 4.4. Let M be a compact 3-manifold. A hierarchy for M 1is a finite
sequence of pairs (My, Fy), ..., (My, F,) such that

1) F; is a 2-sided incompressible surface in M;;

2) M; 1 is obtained from M; by cutting along F;;

3) My = M;

4) each component of My, is a 3-ball.

E.g., a hierarchy for the three torus (three torus, torus), (torus x I, annulus),
(annulus x I, disk)

The main theorem concerning hierarchies is the following:

Theorem 4.5. Let M be a compact orientable irreducible 3-manifold that contains
no projective planes. Then M is Haken if and only if M has a hierarchy.

A key ingredient in proving this theorem is the following lemma:

Lemma 4.6. Suppose M is a compact orientable 3-manifold such that OM contains
a surface of positive genus. Then M contains a properly embedded, 2-sided, incom-
pressible surface F such that 0 # [0F] € m1(OM).

The proof of the lemma is not hard but does require some homology theory. It
may be found in Jaco’s or Hempel’s book.

It follows from this theorem that the class of 3-manifolds which lends itself to
Haken’s general program of classifying 3-manifolds is exactly the class of 3-manifolds

now known as Haken 3-manifolds. The main result of this program is due to Friedhelm
Waldhausen.

Theorem 4.7. (Waldhausen’s Theorem) Homotopy equivalent 3-manifolds are home-
omorphic.

It is unknown whether or not this theorem holds for more general 3-manifolds.
One of the most famous open problems in the theory of 3-manifolds is the following:

Conjecture 4.8. (The Poincaré Conjecture) If M is homotopy equivalent to S3, then
M is homeomorphic to S3.

Exercise 1**: Prove or disprove the Poincaré Conjecture.
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4.3 Seifert Fibered Spaces

Seifert fibered spaces constitute on of the larger classes of 3-manifolds. Not all of
them are Haken, but many are. We discuss them here to provide more examples of
3-manifolds in general and of Haken manifolds in particular. One of the reasons for
continued interest in Seifert fibered spaces is the fact that they project in a natural
way onto a 2-dimensional ”base space”. This fact makes them particularly amenable
to computations.

Definition 4.9. A fibered solid torus of type (I, m) is a solid torus with a foliation by
circles obtained as follows: Consider the cylinderD? x[—1,1]. It is foliated by intervals
of the form {point} x [—1,1]. Identify D* x {—1} to D* x {1} by setting ((r,6),1)
equal to ((r,0+ 2™), —1). A circle formed by intervals of the form {point} x [~1,1]
15 called a fiber of the fibered solid torus.

The core of a fibered solid T is the fiber arising from {0} x I. If 1 > 1, then we
call a fibered solid torus T of type (I,m) an exceptionally fibered solid torus. In this
case the core of T 1is called an exceptional fiber and all other fibers of T are called
regular fibers. If | = 1, then we call a fibered solid torus T of type (I,m) a regularly
fibered solid torus. In this case all of the fibers of T are called regqular fibers.

Suppose Ty and Ty are fibered solid tori. A fiber preserving homeomorphism be-
tween T7 and Ty s a homeomorphism h : Ty — T, that takes fibers to fibers.

The following observations are left as exercises.

Remark 4.10. We may assume that 0 < m < é, for any fibered solid torus is
homeomorphic via a fiber preserving homeomorphism to a fibered solid torus of type
(I,m) with I, m satisfying these requirements. With this assumption, the existence of
a fiber preserving homeomorphism between a fibered solid torus of type (I1,m1) and a
fibered solid torus of type (ly, mo) necessitates Iy = ly and m; = my.

Definition 4.11. A 3-manifold M 1is a Seifert fibered space if M is the union of
pairunse disjoint simple closed curves called fibers such that each fiber has a closed
neighborhood consisting of a union of fibers that is homeomorphic to a fibered solid

torus via a fiber preserving homeomorphism. This closed neighborhood of a fiber is
called a fibered neighborhood.

Denote the quotient space of M obtained by identifying each fiber to a point by B
and denote this quotient map by p: M — B.

Examples: Lens spaces, prism manifolds, the complement of a torus knot.

Remark 4.12. Here B is a surface. This can be seen as follows: The quotient of a
fibered solid torus is a disk. Let q be a point in B. Then p(q) is a fiber f of M. The
fibered neighborhood T of f yields a neighborhood p(T') of q that is homeomorphic to
a disk. We think of B as a disk with exceptional points. The latter are the images of
the exceptional fibers.

Lemma 4.13. If T} and T, are fibered neighborhood of the fiber f, then f is an
exceptional fiber of Ty if and only if f is an exceptional fiber of Ts.
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Proof: This follows directly from Remark 4.10. O

This lemma, allows us to refer to the fibers of a Seifert fibered space as exceptional
fibers or regular fibers unambiguously.

Remark 4.14. The interiors of the fibered neighborhoods of fibers form an open cover
for a Seifert fibered space. It follows that in a compact Seifert fibered space, there will
be only finitely many exceptional fibers.

Definition 4.15. A subset Z of X is saturated with respect top : X — Y if Z =
-1
' (p(2)).

Example: Saturated tori and annuli in Seifert fibered spaces.

We conclude this section with a few well known theorems that provide a brief
overview of some of the results on Seifert fibered spaces.

Theorem 4.16. An orientable Seifert fibered space is either irreducible or homeo-
morphic to either S* x S* or RP*#RP3.

Proof: Two cases need to be considered:

Case 1: OM # 0.

In this case B # (). The proof is by induction on (—x(B), #exceptionalpoints).
Suppose first that B is a disk with at most one exceptional fiber. Then M is a solid
torus. Suppose S is a 2-sphere in M. Then a standard innermost disk argument
shows that S can be made disjoint from a meridian disk for M. Thus S lies in the
3-ball M\T. Hence S bounds a 3-ball by the Schonflies Theorem.

If B there are exceptional points in B, an arc a in B that cuts of a disk containing
exactly one exceptional point corresponds to the saturated annulus A = p~!(a).
Unless B is a disk with at most one exceptional point, A is incompressible. If B
is nonplanar, a non separating arc in B similarly yields a saturated annulus that is
incompressible.

Let S be a 2-sphere in M. If S is disjoint from an incompressible saturated annulus
Ain M, then S lies in the Seifert fibered space M\ A. By the inductive hypothesis,
this Seifert fibered space is irreducible. Hence S bounds a 3-ball in M\ A. Thus S
bounds a 3-ball in M.

Suppose c is an innermost component of AN S in S. Then ¢ bounds a disk D in
S that is disjoint from A except in its boundary. Since A is incompressible, 0D is
inessential in A and bounds a disk D' in A. As usual, the 3-ball bounded by D U D'
describes an isotopy reducing the number of components of ANS. Thus if we isotope
S so that AN S is minimal, then AN S = ().

Case 2: OM = 0.

If M contains a saturated incompressible torus 7', then the argument above can
be applied to show that a 2-sphere S C M can be isotoped to be disjoint from 7.
Thus S lies in M\T, a Seifert fibered space with boundary. It follows that S bounds
a 3-ball in M\T and hence in M.

It remains to consider the cases where B is either a 2-sphere with at most three
exceptional fibers or a projective plane with at most one exceptional fiber.
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The case of lens spaces (B = S? with up to two exceptional points) is left as an
exercise. Here either M is irreducible or homeomorphic to S? x S'. A theorem of
Waldhausen states that prism manifolds (B = S? with three exceptional points) are
irreducible.

So suppose B is a projective plane with at most one exceptional fiber. Let ¢ be a
simple closed curve in B that bounds a disk containing the exceptional point if there
is one. Let T'= p~'(¢) be the corresponding saturated torus. Since c is separating, so
is T. T cuts M into two components: 1) M’, a circle bundle over the Mdbius band
with the natural fibration and 2) 7", a fibered solid torus. Since M, and thus M’, is
orientable, M’ must be the twisted circle bundle over the Mdbius band.

Suppose S is a 2-sphere in M. If S is disjoint from 7', then it lies in either M’
or 7" and hence bounds a 3-ball. Suppose that S N7 is non empty. Let ¢ be an
innermost component of SN 7T in S. Then ¢ bounds a disk D in § that is disjoint
from T except along its boundary. If 0D is inessential in 7', then, as above, there is
an isotopy reducing the number of components of SN7T. So suppose that S has been
isotoped so that the number of components of S N7 is minimal. This assumption
implies that there is no component of SN M’ or SNT’ that is boundary compressible
via a boundary compressing disk that meets more than one component of S N7

We make the following observations (the proofs are left to the reader):
1) The minimality assumption on SN7T implies that there is no component of SN M’

or SNT" that is boundary compressible via a boundary compressing disk that meets
more than one component of SN 7T

2) A properly embedded incompressible surface in 7" is a disk or an annulus A for
which there is a boundary compressing disk that meets more than one component of

ANoT’;
3) OM' is incompressible in M’;

4) A properly embedded incompressible surface with non empty boundary in M’ that
is not boundary compressible via a boundary compressing disk that meets more than
one component of S N7 must be an annulus that double covers the Mobius band.

It follows that under the minimality assumption on S N7, S must consist of an
annulus in M’ that double covers the Mobius band together with two disks in 7”. In
this case, S cuts M into two identical pieces, each consisting of one of the two twisted
I-bundles over a Mobius band coming from M’ and one of the 3-balls coming from
T'. Each of these pieces is homeomorphic to RP3. O

Theorem 4.17. A compact orientable Seifert fibered space M is either a Haken man-
ifold or a lens space (including S? x S, S3) or RP3*#RP? or a prism manifold. In
the latter case, M is Haken if and only if Hi(M) is infinite.

Theorem 4.18. The only Seifert fibered spaces with non unique fiberings are:

a) lens spaces (including S? x S, S3);

b) prism manifolds;

¢) the solid torus;

d) the twisted I-bundle over the Klein bottle;
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e) the double of the twisted I-bundle over the Klein bottle (this 3-manifold also fibers
over S? with four exceptional fibers for which Iy =ly = l3 = Iy = 2.

The following theorem is known as the Seifert ” Conjecture”.

Theorem 4.19. Let M be a compact orientable irreducible 3-manifold. Then M is
a Seifert fibered space if and only if m (M) has a normal subgroup isomorphic to 7.

Exercise 1: Prove Remark 4.10.
Exercise 2: Prove the observations near the end of the proof of Theorem 4.16.

Exercise 3: Let M be a prism manifold obtained as follows: Set M’ = (thrice punc-
tured 2-sphere) x S* and let T}, T, T3 be fibered solid tori of type (11, m1), (I2, m2), (I3, m3)
respectively. Let M be the 3-manifold obtained by identifying the first of three bound-
ary components of M’ with the boundary component of 7T}, the second of the three
boundary components of M’ with the boundary component of T3, and the third of
the three boundary components of M’ with the boundary component of T3.

Calculate the fundamental group of M

5 Thin position of knots

In this chapter we study knots, bridge position and thin position of knots. These
notions are interesting in their own right. So in this short chapter we digress from our
main objective. However, in the study of 3-manifolds, knots and links arise naturally
in a variety of ways. Often, they arise as the locus of intersection of surfaces. In this
context, the notion of thin position, introduced by D. Gabai, has been employed with
great success.

Definition 5.1. A knot in a 3-manifold M is a smooth (or PL) isotopy class of
smooth (or PL) embeddings of S* into M. More generally, link in a 3-manifold M is
a smooth (or PL) isotopy class of smooth (or PL) embeddings of the disjoint sum of
some number of copies of S* into M.

The case M = S? captures many of the problems arising in the study of knots
and links. See for instance the excellent books by Lickorish, Rolfsen, and others.

Definition 5.2. A function h : M — [—1,1] is a height function if it has ezactly two
critical points (a minimum and a mazimum) in interior(M).

An example is the function h : S* — [~1,1] that S* C R* onto the fourth coordi-
nate. Except for the maximum and minimum, the level surfaces of h are spheres.

Definition 5.3. Let h : S* — [—1,1] be a height function and let K C S be knot or
link. We say that K is in bridge position if all mazxima of K occur above all minima
of K. The bridge number of K is the least number of mazxima K must have with
respect to a height function.

E.g., the bridge number of the unknot is 1, the bridge number of the trefoil is 2.
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Definition 5.4. Let h: S®* — [—1,1] be a height function and let K C S® be knot or
link.

Let K C S3 be a fized presentation of a knot or link K (i.e., not an isotopy class)
and let ¢, ..., c, be the critical values of h|g listed in increasing order; i.e., so that
h(ci) < -+ < h(cp). Choose ry,...,Tn_1 S0 that ¢; < 1; < cip1. Set Ry = h™'(ry).
The width of K relative to h, denoted by w(K,h), is > 1K N Ri|. The width of K,
denoted by w(K), is the minimum of this relative width over all height functions and
all presentations of K.

We say that K s in thin position if it is presented with respect to a height function
realizing its width.

Here R; is a thin level of K with respect to h if ¢; is a mazimum value for h|g
and c;y1 s a minimum value for h|x; and R; is a thick level of K with respect to h
if ¢; is a minimum value for h|x and ¢;11 is a mazimum value for h|k.

E.g., the width of the trefoil is 2+4+2 = 8.
Little is known about thin position of knots. Here are a few theorems:

Theorem 5.5. (Thompson) If for a knot K C S3 thin position is knot bridge position,
then S*\n(K) contains a closed incompressible surface.

Proof: (Sketch) Let h : S — [—1,1] be a height function and let K C S® be a fixed
presentation of K realizing thin position of K. If this presentation is not in bridge
position, then there is a thin level R. We may assume that R is the highest such thin
level. Set R* = RN (S*\n(K)). By a theorem of Y.Q. Wu, R* is incompressible in
S*\n(K).

To obtain a closed surface in S*\n(K) proceed as follows: Let A be the collection
of annuli cut off from 9(S*\n(K)) by OR* that lies above R*. Then a pushoff of R*UA
into S3\n(K) is a closed surface. It follows from a (vital) lemma of M. Culler, C. McA.
Gordon, J. Luecke and P. Shalen, that this surface is in fact incompressible. O

Definition 5.6. A knot is small if its complement contains no closed incompressible
surface that is not boundary parallel.

Definition 5.7. Given two knots K; C S? and K, C S® the connected sum K, #K, C
S? is the pairwise connected sum of (K1,S?) and (K»,S3?).

Theorem 5.8. (Rieck-Sedgwick) For K, Ko C S? small knots, w(K #K) = w(K;)+

Exercise: Find a knot with width bigger than 9.

6 Heegaard splittings

A Heegaard splitting is a splitting of a 3-manifold into two simple pieces. Interestingly
enough, every 3-manifold admits such a splitting. It turns out however, that these
splittings are not as simple as they appear. In this chapter, we will be interested
in applications of these splittings. Later we will discuss structural and classification
theorems for Heegaard splittings.
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6.1 The basics

Definition 6.1. A handlebody is a compact 3-manifold that is homeomorphic to a
reqular neighborhood of a connected graph in S3.

E.g.
Definition 6.2. A spine of a handlebody V' is a graph to which V collapses.

Definition 6.3. A Heegaard splitting of a closed 3-manifold M is a decomposition
M =V Ug W such that 1) V,W are handlebodies; and 2) S = 0V = OW. Here S is
called the splitting surface of M =V Usg W. Two Heegaard splittings are considered
equivalent if their splitting surfaces are isotopic.

E.g., Genus 0 and genus 1 splitting for S®, genus 1 splitting for lens spaces, the
three torus

Theorem 6.4. (Moise, Bing) Every closed orientable 3-manifold admits a Heegaard
splitting.

Proof: (Bing’s Proof) Let M be a closed 3-manifold. Then M admits a triangulation
(M, K). Set V.= N(K"). Then V is a handlebody. It is not too hard to see that the
closure W of the complement of V is also a handlebody. O

Definition 6.5. Let M = V Ug W be a Heegaard splitting and let S* = V' Up
W' be the standard genus 1 Heegaard splitting of S®. The pairwise connected sum
(M, S)#(S? T) defines a Heegaard splitting M = V Uz W called an elementary stabi-
lization of M = VUsW . A Heegaard splitting is called a stabilization of M =V UsW
if it is obtained from M =V Ug W by performing a finite number of elementary sta-
bilizations.

Theorem 6.6. (Reidemeister-Singer) Any two Heegaard splittings of a 3-manifold
M become equivalent after a finite number of stabilizations.

Sketch of proof: Let M = Vi Us, Wi be a Heegaard splitting. Let (M, K) be a
triangulation of M. Let X; be a spine of V;. By subdividing K, if necessary, we
may assume that each 3-simplex is met by at most one boundary parallel arc. We
may then move points of intersection of the spine with the faces of a 3-simplex into
the vertices. By subdividing again, if necessary, we avoid collisions. We may the
boundary parallel subarcs of the spine in the interior of the 3-simplices entirely into
K'. Tt then follows that the Heegaard splitting defined as in the proof of Moise and
Bing’s Theorem is a stabilizatin of M = V; Ug, W;. Similarly, the Heegaard splitting
defined in this way by a subdivision of K is a stabilizatin of M = V; Ug, W;.

Now consider M =V, Ug, W5 and proceed analogously. Since any two simplicial
complexes of the same with the same underlying space have a common subdivision
(exercise), the theorem follows.

Exercise 1: Prove that any two simplicial complexes of the same with the same
underlying space have a common subdivision.
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6.2 Reducibility Properties

We here discuss two important reducibility properties for Heegaard splittings. These
theorems have many consequences. One consequence is that a Heegaard splitting of
a connected sum of 3-manifolds factors into Heegaard splittings of the summands.

Definition 6.7. A Heegaard splitting M = VUgsW is reducible if there is an essential
circle c C S and disks D C V, E C W with 0D = OF = c. A Heegaard splitting is
wrreducible if it is not reducible.

A Heegaard splitting M =V Us W is weakly reducible if there are disks D C 'V,
E C W such that 0D, OF are essential and 0D N OFE = (). A Heegaard splitting is

strongly irreducible if it is not weakly reducible.

E.g., the genus 3 Heegaard splitting of the three torus is weakly reducible.
Definition 6.8. A disk D is a handlebody V is essential if 0D is essential in OV .

Lemma 6.9. An incompressible boundary incompressible surface is a handlebody is
a disk.

Proof: ~We prove this by induction on the genus of the handlebody. We leave it
as an excercise to prove the assertion for a 3-ball. If V' is a handlebody of positive
genus then it contains an essential disk D. Denote the incompressible boundary
incompressible surface in V' by F'. Isotope F' so that the number of components in
FND is minimal. An innermost disk argument then shows that the number of closed
curves in this intersection is zero. An outermost arc argument shows that the number
of arcs in this intersection is zero. Thus F' C (V\n(D)). Since the genus of V\n(D)
is one less than the genus of V', the inductive hypothesis shows that F'is a disk. [

The following theorem is one of the fundamental theorems concerning Heegaard
splittings. One consequence of this theorem is that a Heegaard splitting of a connected
sum of 3-manifolds can be factored into Heegaard splittings of the summands.

Theorem 6.10. Suppose M is a reducible 3-manifold and M =V Us W a Heegaard
splitting. Then M =V Ug W is reducible.

Proof: Let S be an essential sphere in M. We may assume that S is chosen so that
the number of components, #|S N S|, of SN S is minimal. With this assumption the
following holds:

Claim: SNV is incompressible in V and S N W are incompressible in W.

Suppose that SNV, say, is compressible in V. Then there is a disk D C V with
dD c S and (D\dD)N S = 0. Cut S along D and cap off the resulting boundary
components with a copy of D. This creates two 2-spheres S;, S5 at least one of which is
essential. Note that #[SNS| = #|S,NS|+#[S2NS| and #|S,NS| > 0,#[S.NS| > 0.
But this violates our minimality assumption. The same argument holds for SNW in

w.

It now follows that any component Q of SNV (respectively, SN W) that is not a
disk is boundary compressible in V' (respectively, W). Isotoping such a component of
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SNV (respectively, s W) across the boundary compressing disk results in one Q' or
two components of intersection Q1, @2 such that x(Q') = x(Q)+1 or x(Q1)+x(Q2) =

x(@) + 1. Thus by locating boundary compressions of SNV in V' and performing
these boundary compressions, we can guarantee that S NV consists of disks.

We now assume that S is chosen so that #[S N S| is minimal, subject to the
constraint that SNV or S consists of disks. Suppose the number of such disks is n.
The proof of the claim then still shows that SN W is incompressible in W. Again it
follows that a component of SN W that is not a disk is boundary compressible.

We must distinguish between two types of boundary compressions: Those that
produce one component Q' out of a component Q of SN W and those that produce
two components (), Q. Call the former non separating and the latter separating.
In case of the former, the portion of the boundary of the boundary reducing disk
that meets S has its endpoints on two distinct components of Q. In case of the
latter, the portion of the boundary of the boundary reducing disk that meets S has
its endpoints on one component of Q. Note that there can be at most —x(@) non
parallel essential arcs of the latter type in (). As we sum over all possible components
Q of SNW, there can be at most —x(S N W) = n — 2 such arcs.

The effect of doing a boundary compression of the former type is to lower the
number of components of SNV by one and to leave the number of components of
S N W unchanged. The effect of doing a boundary compression of the latter type is
to leave the number of components of S NV unchanged and to raise the number of
components of SN by one. We now perform boundary compressions on S N W to
reverse the situation, i.e., to isotope S so that SNV is a connected planar surface and
SNW consists of disks. As we do so, we perform at most n— 2 boundary compressions
of the latter type. It follows that at the end of this procedure, SNW consists of disks
and that there are at most n — 1 components.

We may now play the same game with SN V. We then end up with SNV
consisting only disks and of at most n — 2 components. A contradiction to the
assumed minimality.

O

Exercise: Show that an incompressible boundary incompressible surface in the 3-ball
is a disk.

6.3 Weak reducibility and incompressible surfaces

In this section we prove a theorem of A. Casson and C. McA. Gordon. This the-
orem establishes a connection between a Heegaard splitting being weakly reducible
and the manifold of which it is a Heegaard splitting containing an incompressible
surface. This idea has come a long way since its inception. In particular, it has
led to the concept of a thin manifold decomposition of a 3-manifold pioneered by M.
Scharlemann and A. Thompson. This concept in turn gave rise to the notion of a gen-
eralized strongly irreducible Heegaard splitting. The concept of a generalized strongly
irreducible Heegaard splitting. A structure possessed by every compact 3-manifold.

Theorem 6.11. Suppose M is a closed orientable 3-manifold and M =V Ug W a
weakly reducible Heeqaard splitting. Then either M contains an incompressible surface
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or M =V Ug W is reducible.

Proof: Let D be a non empty disjoint union of non parallel essential disks in V' and
€ be a non empty disjoint union of non parallel essential disks in W such that 0D
NOE = (). Consider the surface S* obtained by cutting S along (D UE) and capping
off the resulting boundary components with copies of the disks in D U £. Note that
after a small isotopy, a copy of S* is embedded in M.

Since M =V Ug W is weakly reducible, there are such collection of disks DU £.
Thus we may choose D U € so that x(S*) is maximal.

Case 1: A component, (), of S* has positive genus.

In this case it follows from our maximality assumption that @ is incompressible.

Case 2: All components of S* are 2-spheres.

Let V be the components of $* that meet V' and let W be the components of S*
that meet W.

Claim 1: YV N W4# 0.

If Y N W= (), then reversing the cut and paste performed above would connect
up components in ¥V and in W, producing at least two components. Since S was
connected, this is impossible.

Let S € VNW. Then S lies mostly in S. Furthermore, SNV and SNW are non
empty and consist of disks. Let ¢ be a curve in S that separates the components of
SNV from the components of SN W. Note that ¢ is a simple closed curve in S.

Claim 2: ¢ is an essential curve in S.
There are essential curves to either side of ¢, thus ¢ can’t bound a disk in S.
Now the disk in ic that meets V' can be isotoped slightly to one side of S to lie

entirely in V' and the other can be similarly isotoped to lie entirely in W. This shows
that M =V Ug W is reducible. O

In the case in which M = V Ug W is reducible, two things way happen: 1) The 2-
sphere constructed may be essential. 2) The 2-sphere constructed may be inessential.
In the first case, M is reducible. In particular, M contains an incompressible surface,
namely the 2-spere. In the second case, it follows from a theorem of Waldhausen that
M =V Ug W is in fact stabilized.

6.4 Heegaard genus and rank of fundamental group

The description of a 3-manifold via a Heegaard splitting gives a natural way of com-
puting the fundamental group of a 3-manifold. In this section we consider two distinct
notions, the Heegaard genus of a 3-manifold and the rank of the fundamental group
of a 3-manifold. The insight here translates into an inequality for these invariants.

Definition 6.12. The Heegaard genus of 3-manifold M, denoted by g(M), is the
least possible genus of a splitting surface of a Heegaard splitting for M.

E.g., g(S?) = 0, g(lens space) = 1, g(prism manifold) = 2.
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Definition 6.13. The rank of a 3-manifold M, denoted by r(M), is the least number
of generators required for m (M).

Theorem 6.14. r(M) < g(M)

Proof: Given a Heegaard splitting M = V UgW that realizes g(M), we may compute
the fundamental group of M as follows: We consider M to be built from V in g(M)+1
steps. At each of the first g(M) steps, we add an open neighborhood of a meridian
disk for W. In the final step, we add an open neighborhood of the 3-ball that remains
when an appropriate set of g(M) meridian disks are removed from W.

This description translates into a computation of 71 (M). Here m1(V) is the free
group on g(M) generators. Adding an open neigborhood of a disk (whose fundamental
group is trivial) adds a relation at each of the first g(M) steps. In the final step, a
3-ball (also with trivial fundamental group) is added along its boundary 2-sphere.
Thus the fundamental group is unchanged.

To summarize: We obtain a (“balanced”) presentation

m (M) =< acl,...,:L'g(M)|?“1,---,7'g(M) >

Exercise 1: Show that for M a 3-manifold, g(M) = 0 implies M = S3.

Exercise 2: Design a sufficiently complicated genus 2 Heegaard splitting and calculate
the fundamental group of the 3-manifold of which it is a Heegaard splitting.

7 Dehn surgery

The concept of Dehn surgery is one of the fundamental concepts in 3-manifolds being
explored today. The most important theorem concerning Dehn surgery is that every
3-manifold can be obtained via Dehn surgery on an appropriate link.

7.1 Coordinates

The idea behind Dehn surgery is simple: Given a knot or link in K C S3; set C(K) =
S3\n(K). Now create a new 3-manifold by attaching solid tori to the components of
OC(K). A little more needs to be said concerning the specifics of the reglueing. The
goal here is to obtain a new 3-manifold, not to simply reconstruct S®. For this reason
we introduce a coordinate system. To do so, we must first prove a lemma.

Lemma 7.1. Let K C S? be a knot. Set C(K) = S¥\n(K). Let Si,Sy be Seifert
surfaces for K. Then S; NOC)K) is parallel to Sy N OC(K).

Proof: Recall that Seifert surfaces are oriented. In S;NC(K) and SoNC(K) intersect
in arcs and simple closed curves. Along an arc of intersection, the right hand rule
induces an orientation on this arc. This orientation determines an initial or - endpoint
and a terminal or + endpoint of the arc.
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Now consider how the two torus knots S;NOC(K) and SyNIC(K) intersect on the
torus 0C(K). By marking the plus and minus sides of S;N0C(K) and S;NOC(K) on
JC(K) we can keep track of whether the points of intersection are initial or terminal
points. Note, however, that if there are such intersections, then they are either all
initial points or all terminal points. Thus there can be no such intersections and the

curves in S; N OC)K) and S, N C(K) are parallel. O

Definition 7.2. Let K C S? be a knot. Set C(K) = S3\n(K). Denote by m the
curve on OC(K) that bounds a disk in S3. We call this curve the meridian. Let S be
a Seifert surface for K. Denote by | the curve S N OC(K). We call this curve the
longitude.

The process of removing n(K) from S and attaching a solid torus to the resulting
3-manifold in such a way that a meridian goes to a curve of slope m/l on 0C(K) is
called m/l-Dehn surgery.

noindent Exercise 1: Draw the longitude for some non trivial knot.

noindent Exercise 2: Generalize the notion of Dehn surgery on a knot to Dehn
surgery on links.

7.2 Dehn surgery and Dehn twists

We here outline the proof of one of the most impressive results in the study of 3-
manifolds. This result states that every closed orientable 3-manifold is obtained
via Dehn surgery on a link in S3. The details of this argument can be found in
W.B.R. Lickorish’s well written account: A representation of orientable combinatorial
3-manifolds. Ann. of Math. (2) 76 1962 531-540.

Definition 7.3. Let S be a closed orientable surface. Let ¢ be a stmple closed curve
i S. Amap f: S5 — S s called a Dehn twist around c if

1) fls\n(c) is the identity map; and
2) fn() is a map of the annulus that is parametrized by f(r,0,t) = (r,0+27t,t), for
each (r,0,t) € St x [0,1].

As it turns out, Dehn twists form the building blocks for all surface homeomor-
phisms.

Theorem 7.4. Every surface homeomorphism can be expressed as a composition of
Dehn twists.

The proof of this theorem is rather lengthy. So we omit it here. But the methods
employed in the proof are elementary. Students should be able to read through the
argument in Lickorish’s paper on their own.

We now prove two lemmata.

Lemma 7.5. Let M be the connected sum of g factors of SxS*. Then M is obtained
by (1/0,...,1/0)-Dehn surgery on the g component unlink in S3.
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Proof: We consider first the case in which g = 1. In this case 1/0-Dehn surgery
involves removing a regular neighborhood of the unlink, which creates a solid torus
V', and then attaching a solid torus W to the resulting boundary component in such
a way that a meridian of W goes to a meridian of V. This yields S? x S*.

More generally, consider the g component unlink. Separate the g components by
a disjoint collection S of g — 1 2-spheres in S3. On each component of the unlink,
perform 1/0-Dehn surgery. Now S is a set of decomposing spheres that factors the
resulting 3-manifold into g factors, each homeomorphic to S% x S'. O

Lemma 7.6. Let S be closed orientable surface of genus g. Let ¢ be a simple closed
curve in S. Let f be a Dehn twist around c. Let My be the 3-manifold obtained by
identifying two genus g handlebodies along their boundaries via f. Let My be the
3-manifold obtained by identifying S with the splitting surface of the standard genus
g Heegaard splitting of the connected sum of g factors of S? x S and performing
1/1-Dehn surgery along c. Then M is homeomorphic to M.

Proof: Both 3-manifolds in question have genus g Heegaard splittings. This is more
obvious in the case of the former 3-manifold. In the case of the latter 3-manifold,
we may isotope c¢ to lie just below the splitting surface and then consider the Dehn
surgery to be taking place entirely in one handlebody. Removing and replacing the
solid torus as required then still yields a handlebody (as does any n/1-surgery).

There is thus a natural homeomorphism between the two pairs of genus g han-
dlebodies. We must show that these homeomorphisms extend across the splitting
surface of the Heegaard splittings to yield a homeomorphism of 3-manifolds. Note
that in the original Heegaard splitting of the connected sum of ¢ factors of S x S!
the two genus g handlebodies are identified along their boundaries via the identity
map.

We consider ¢ to be lying in the splitting surface of the connected sum of g factors
of S? x St. Let A; and A, be the two components of 9N (c)\S. Denote the boundary
of the meridian disk of the solid torus attached during Dehn surgery by d. Then we
may isotope d so that it is parallel to a meridian of N (c) in A;. This means that in
As, d will wind once around the longitude of ON (¢) as it crosses from one component
of 0A, to the other. Collapsing the interior of N(c) we see that we are identifying
Ay to Ay with d N A; going to d N Ay. Thus the 3-manifold under consideration is
homeomorphic with M;. O

We now prove the main theorem:

Theorem 7.7. Every closed orientable 3-manifold can be obtained by Dehn surgery
on a link in S3.

Proof: Let M be a closed orientable 3-manifold. By Lemma 7.5 it suffices to show
that M can be obtained by Dehn surgery on a link in a connected sum of manifolds
homeomorphic to S? x S™.

Let M =V Ug W be Heegaard splitting of M. Since the two handlebodies V, W
are homeomorphic, M may be obtained by taking two copies of the handlebody V
and identifying these along their boundaries via a homeomorphism f. Denote the
genus of 0V by g.
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By Theorem 7.4, we may factor f into Dehn twists, i.e., f = f; o---0 f,, where
each f; is a Dehn twist around a curve ¢;. Consider now the 3-manifold that is the
connected sum of g factors of S? x S!. Further consider n parallel copies S, ..., S,
of the standard splitting surface S of this 3-manifold. Cutting along each surface S;
and reidentifying via the Dehn twist f; yields M. By Lemma 7.6, this goal may also
be attained via 1/1-Dehn surgeries along the curves c;.

O

8 Hyperbolic 3-manifolds

One of the most active areas of research into 3-manifolds concerns hyperbolic 3-
manifolds. This is another class of 3-manifolds with extra structure. This extra
structure adds methods of both differential geometry and algebra to the standard bag
of tools used in studying 3-manifolds. We will give only a very superficial glimpse of
this rich subject.

8.1 Basic hyperbolic geometry

Hyperbolic space can be realized in n-dimensional space in a variety of ways. We here
discuss the upper half space model.

Definition 8.1. The upper half space model for hyperbolic space is a metric space
obtained as follows: Let U" = {(z1,...,2,) € R* | ,, > 0}. The element of hyperbolic

arc length is |Z—$| (|dx| = \/dx? + dy?) and the element of hyperbolic volume is given
b dri...dzy, "
an arc connecting the points. We denote this metric space by (U™, dyn).

The distance between two points is the minimal hyperbolic arc length of

E.g. 1) Calculate the arc length of the horizontal path from (0,1) to (1,1).
We parametrize the path by (¢,1). Then,

Lo [/

+0
1 dt =1

E.g. 2) Calculate the arc length of the vertical path from (0, 1) to (0, 2).
We parametrize the path by (0,¢). Then,

2 12
L= / L:dt — [Int]? = In2 — In1 = In2
1
More generally, the length from (0, a) to (0,b) will be In(b/a).

E.g. 3) The subarc of the unit circle from (0,1) to (1,0) not including this second
endpoint has infinite length. To see this, we parametrize this arc as (sint, cost) and
compute the following improper integral
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dt =

% Vcos?t + sin’l
I / cos“t + sin
0

cost

51

—dt = limy_z|ln(sect + tant)|} — oo
| Lglin( )
Definition 8.2. Given a metric space (X, d) a geodesic in (X, d) is a unit speed path
v that s locally distance minimizing. IL.e., for each v € X, there is a neighborhood
U such that for any two points in v N U the distance between these two points is the
length of the subarc of vy N U connnecting them.

Theorem 8.3. The geodesics in (U, dyn) are rays and half circles that are orthogonal
to R*1 x {0} C R".

For a proof of this fact see for instance John G. Radcliffe’s book “Foundations of
Hyperbolic Manifolds”.

Definition 8.4. A geodesic subspace of (U, dyn) is a subset X C U" such that X
contains every geodesics that meets X along an open subset.

Definition 8.5. A hyperbolic triangle is a subset of a 2-dimensional geodesic subset
of (U, dyr) that is bounded by connected subsets of three geodesics. In the case that
it is bounded by three complete geodesics and all “vertices” lie at infinity, the triangle
15 called an ideal triangle.

E.g. 4) Calculate the area of the ideal triangle in (U?, dy2) bounded by the geodesic
ray with z-coordinate —1, the geodesic ray with z-coordinate 1, and the upper half
of the unit circle.

1 (o] 1
dydzx 1 .
Az// —=/ ————dz = [arcsinz]', =7
Sy YP 1 V1 —a? | =

As it turns out, the area of any ideal triangle is 7.

One of the first questions one is likely to ask concerning a metric space is that of
its symmetries. The following notion generalizes this idea:

Definition 8.6. An isometry of a metric space is a homeomorphism that preserves
distances between points.

E.g 1) (z1,...,2,) = (azy,...,az,)
Eg 2) (.’131, e ,an) — (331 + bl, ey T+ bnfl,.’L'n)
Eg 3) (z1,...,2n) = (72—, ..., 7722—)

z%+...+a¢%> ’ m%+n+‘r%
To verify that these are indeed isometries, consider a parametrized path (z(t), y(t))
and plug into the formula for arc length.
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Note that the group generated by the three isometries above acts transitively on
rays orthogonal to R*™' x {0} C R" (via isometries of the second type) and on half-
circles orthogonal to R" ! x {0} C R* (via compositions of isometries of the first
and second type). Now note that the ray orthogonal to R*~! x {0} C R" limiting
on (1/2,0) is mapped to a half circle orthogonal to R*~! x {0} C R" and limiting
on (0,0) and (2,0). Thus the group generated by the isometries of these three types
acts transitively on geodesics. It follows that this is the complete group of isometries.
This group is denoted by either Isom(U", dy=) or M6(U™, dyn).

8.2 Hyperbolic n-manifolds

Definition 8.7. A hyperbolic n-manifold is a n-manifold that is locally isometric to
n-dimensional hyperbolic space (e.g., in the upper half space model).

Before discussing examples, we wish to state the relation between hyperbolic n-
manifolds and subgroups of the isometry group. To do so, we must define two notions.

Definition 8.8. Let I' be a group acting on X. T acts discontinuously if for any
compact subset K C X, K N gK is non empty for only finitely many g € G. T acts
freely if for every x € X, the stabilizer of x, 'y ={g € I' | gz =z }, is trivial.

Theorem 8.9. M is a hyperbolic n-manifold if and only if it is the quotient of U"
by a subgroup I' of isometries of U that acts freely and discontinuously on U".

The proof of this theorem is not difficult if one accepts the (highly non trivial)
fact that a simply connected hyperbolic n-manifold must be isometric with U”.

E.g. 1, The complement of the figure 8 knot. Later, we will see why this 3-manifold
is hyperbolic.

E.g. 2, A closed orientable surfaces of genus at least 2. We consider the closed
orientable surface of genus 2. The genus 2 surface may be obtained by identifying
opposite sides of an octagon. This octagon may be cut into eight isosceles triangles by
adding a vertex v in its center and connecting this vertex to the original eight vertices.
We may assume that each of these triangles meets v in an angle of 27/8 = 7/4.
Consider the two equal angles. In the genus 2 surface the eight corners of the octagon
match up. Thus the angles at the eight corners of the octagon must add up to 2.
Each of the two equal angles in an isosceles triangle must thus be 27/(8)(2) = 7/8.

We begin by realizing this triangle in the upper half plane model. First consider
the ideal triangle bounded by the upper half of the unit circle and the vertical rays
limiting on (—1,0) and (1,0). The angles in this triangle are all 0. Now consider
replacing the vertical rays by very large half circles that limit on (—1,0) and (1,0)
and intersect the y-axis in (0,y) for y very large. Then the angle between the rays is
very small. As these two circles get smaller, i.e., as y gets smaller, the angle between
them gets larger. Any value strictly between 0 and 7 can be obtained. We choose
the two half circles C;, Cy to obtain an angle of 7/4. Denote the point of intersection
of C; and C5 by z.

Next consider expanding the upper half of the unit circle. As we do so, the equal
angles in the isosceles triangle get larger. Any value strictly between 0 and 37/4 may
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be obtained. (Notice how small triangles are almost Euclidean and thus the sum of
the angles in the small triangle is almost 7.) We choose the half circle C3 to obtain
angles of 7/8.

Reflect C'y in C5 and vice versa. Then further reflecting C'y and Cs in the resulting
circles. In this manner we obtain an octagon consisting of eight copies of the orginal
hyperbolic triangle meeting in z. Note that the reflection of this octagon in C's maps
the octagon off itself. Let I' be the group generated by the reflections in the eight
copies of C3. As it turns out, this group acts freely and discontinuously on the upper
half plane. Its quotient is a closed orientable genus 2 surface.

Remark 8.10. An argument similar to that used to construct the hyperbolic triangle
with angles m/4,7/8,m/8 may be used to show that in fact for any «, B,y > 0 with
a+ B+ v < there is a hyperbolic triangle with angles o, 3,7.
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