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a b s t r a c t

We present a second order accurate, geometrically flexible and easy to implement method
for solving the variable coefficient Poisson equation with interfacial discontinuities or on
irregular domains, handling both cases with the same approach. We discretize the equa-
tions using an embedded approach on a uniform Cartesian grid employing virtual nodes
at interfaces and boundaries. A variational method is used to define numerical stencils near
these special virtual nodes and a Lagrange multiplier approach is used to enforce jump con-
ditions and Dirichlet boundary conditions. Our combination of these two aspects yields a
symmetric positive definite discretization. In the general case, we obtain the standard 5-
point stencil away from the interface. For the specific case of interface problems with con-
tinuous coefficients, we present a discontinuity removal technique that admits use of the
standard 5-point finite difference stencil everywhere in the domain. Numerical experi-
ments indicate second order accuracy in L1.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Elliptic interface problems such as

�r � ðbðxÞruðxÞÞ ¼ f ðxÞ; x 2 X n C; ð1Þ
½u� ¼ aðxÞ x 2 C; ð2Þ
½bðxÞru � n� ¼ bðxÞ x 2 C; ð3Þ
u ¼ pðxÞ x 2 @Xd; ð4Þ
bðxÞru � n ¼ qðxÞ x 2 @Xn ð5Þ

have a wide variety of applications in physics and engineering, and naturally arise when two dissimilar materials interact
across a thin interface, either as quasistatic problems or in the discretization of time-dependent problems. Common exam-
ples include immiscible, incompressible fluids in contact and phase change problems. The interface C is generally a co-
dimension one closed curve that divides the domain into an interior X� and an exterior region X+ such that
X ¼ Xþ [X� [ C � R2 (see Fig. 1). The scalar coefficient b and the source term f can exhibit discontinuities across C, but have
smooth restrictions b+, f+ to X+ and b�, f� to X�. We let n(x) denote the outward unit normal to X� at a point x 2C, and
define ½v�ðxÞ :¼ vþðxÞ � v�ðxÞ :¼ lim�!0þvðxþ �nðxÞÞ � lim�!0þvðx� �nðxÞÞ as the ‘‘jump” of the quantity v across the inter-
face C. The relevant physics generally determine the jumps in the solution (2) and in the flux (3), as well as the boundary
conditions on @X. Unless stated otherwise, we assume the curves C, @X are smooth.
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Due to irregular geometry of the interface in many physical phenomena, a natural approach to the numerical approxima-
tion is the finite element method (FEM) with unstructured meshes that conform to the geometry of C [1–6]. However, mesh-
ing complex interface geometries can prove difficult and time-consuming when the interface frequently changes shape
(especially in 3D). Also, many numerical methods, such as finite differences, do not naturally apply to unstructured meshes.
These concerns motivated the development of ‘‘embedded” (or, ‘‘immersed”) methods that approximate solutions to (1)–(3)
on Cartesian grids or structured meshes that do not conform to the interface. Despite advances in this direction, embedded
methods that retain higher order accuracy in L1 typically introduce relatively difficult linear algebra problems and complex
implementations that sometimes require significant effort to adapt to general applications.

With these concerns in mind, we introduce a second order virtual node method for approximating the elliptic interface
problem (1)–(3) with irregular embedded Neumann and Dirichlet boundaries on a uniform Cartesian grid. We use a regular
Cartesian grid because it simplifies the implementation, permits straightforward Lagrange multiplier spaces and achieves
higher order accuracy in L1. Our approach uses duplicated Cartesian bilinear elements along the interface to introduce addi-
tional ‘‘virtual” nodes that accurately account for the lack of regularity. The method is variational (to define the stencil on the
interface cells in a symmetric way) and uses Lagrange multipliers to enforce embedded Dirichlet conditions and the jump
conditions (2) weakly. In the general case, our choice of Lagrange multiplier space admits a symmetric positive definite dis-
cretization. For the special case of smooth b, we present a novel discontinuity removal technique to allow the use of the stan-
dard 5-point difference stencil everywhere in the domain. This is unlike the numerous FEM approaches that use similar
virtual node representations on unstructured meshes [7–14], as although some finite difference methods possess the notable
advantage of discontinuity removal [15], to our knowledge a technique that retains the original system matrix is largely
unexplored in the FEM frameworks. In all cases, our method yields the standard 5-point difference stencil away from the
boundaries and interfaces. Numerical experiments indicate second order accuracy in L1.

The remainder of the paper proceeds as follows: we review existing embedded methods in Section 2; in Section 3 we de-
tail the proposed numerical method by first introducing its application to embedded Neumann problems in Section 3.1, and
then to embedded Dirichlet and embedded interface problems in Sections 3.2 and 3.3, respectively; Section 3.3.1 details the
special case of continuous b; Section 4 describes a simple implementation and lastly, we demonstrate the accuracy of the
method with numerical experiments in Section 5 and conclude with a short summary and discussion.

2. Existing methods

The Immersed Interfaced Method (IIM) is perhaps the most popular finite difference method for approximating (1)–(3) to
second order accuracy. LeVeque and Li first proposed the IIM for approximating elliptic interface problems in [16] and the
term now applies to a widely researched and extensively applied class of finite difference methods [17–23]. See [15] and the
references therein for a complete exposition of the method and its numerous applications, and [24] for justification of the
general IIM approach. Using generalized Taylor expansions, the original IIM adaptively modifies the stencil to obtain OðhÞ
truncation error along the interface. For smooth b, this reduces to the standard 5-point finite difference stencil, but otherwise
results in a non-symmetric discretization that follows from locally solving constrained optimization problems that enforce a
discrete maximum principle [25]. The IIM also generally requires the evaluation of higher-order jump conditions and surface
derivatives along the interface. This can lead to difficulty in implementation, especially in 3D [26,20,15,21]. The piecewise-
polynomial interface method of [27] is a notable new approach to the IIM that does not require the derivation of additional
jump conditions and accurately treats complex interfaces. The works of [28–31,15] describe other various attempts to im-
prove the efficiency and reduce the complexity of the IIM.

Extrapolation based finite difference schemes such as [32–37] introduce fictitious points along coordinate axes and use
the known jump conditions to determine their values. The Ghost Fluid Method (GFM) of [32] exemplifies such methods. For

(a) (b)

Fig. 1. Graphical depiction of the problems (1–5). The image on the left depicts the relevant domains for interface problems, and the image on the right
depicts the domain for embedded boundary problems.
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two and three dimensional problems, the GFM neglects the tangential flux terms [bru � s] in determining the fictitious val-
ues, resulting in a symmetric positive definite but first order [38] method. In fact, the GFM approach of Liu et al. [32] moti-
vated our approach. However, given the similarity of our final approach to another of Fedkiw’s methods, the virtual node
algorithm [11–13], we describe our method accordingly. Our variational approach at duplicated interface cells prevents
the loss of accuracy inherent in ignoring the tangential jumps. Various other approaches attain higher order accuracy by
accounting for the tangential flux in other ways, often sacrificing simplicity and symmetry of discretization in the process.
For instance, the Coupling Interface Method (CIM) proposed in [33] extends the GFM to higher dimensions by using a second
order extension at most grid points, but reverting to a first order method at grid points where the second order extension
cannot apply. The method couples jump conditions in different directions to express the tangential derivatives, and the
use of one-sided differences results in a non-symmetric discretization. Similarly, the Matched Interface and Boundary
(MIB) method [34] uses higher order extrapolations of the solution matched with higher order one-sided discretizations
of the jump conditions to determine the values at fictitious points. The MIB method accounts for non-zero [bru � s] by dif-
ferentiating the given jump conditions using one-sided interpolations. This widens the stencil in several directions that de-
pend on the local geometry, and results in a non-symmetric discretization. The work of [39] extended the MIB to handle high
curvature geometry, and [40] provides a 3D version. In [41] Hou and Liu also use techniques seemingly inspired by the anal-
ysis of the original GFM approach done in [38]. They develop a second order variational GFM by altering finite element inter-
polating functions to capture the jump conditions in the solution. Their approach is remarkably robust to non-smooth
interface geometry, but results in a non-symmetric discretization in the general case. The recent works of [42,43] treated
the cases of Robin and Neumann boundary conditions by altering the 5-point stencil along the boundary using a finite vol-
ume like approach. This results in an symmetric positive definite discretization.

Ideas similar to the extrapolation based finite difference schemes have also seen extensive use in FEM, for instance in the
fictitious domain methods for embedded boundary problems [44–46,10,47–50] or the ‘extended finite element methods’
(XFEM) [51–58].1 Fictitious domain methods handle embedded boundaries by including every element that intersects the inter-
face into the discretization. This naturally introduces ‘‘virtual nodes” (or ‘‘ghost nodes”) into the resulting discretization. The
XFEM ‘‘enriches” the standard finite element basis with additional discontinuous basis functions, thereby introducing new de-
grees of freedom. These basis functions exist only at the nodes of elements that intersect the interface, and usually are the stan-
dard basis elements multiplied by a generalized Heaviside function. The methods of [7–10,13,14] introduce a related virtual
node concept to provide the additional degrees of freedom required to represent the discontinuities. The most straightforward
implementation of this virtual node concept [8–10] yields a representation equivalent to the standard Heaviside enrichment of
the XFEM. However, this approach generalizes to the slightly richer representations of [11,12,14] that attain more geometric
detail, particularly when dealing with coarse grids and non-smooth interfaces. Moreover, virtual node representations are con-
sidered more geometrically intuitive and easier to incorporate into existing FEM code [10,9,14] than traditional Heaviside
enrichment.

The solution spaces of these FEM approaches generally do not satisfy the embedded boundary or interface conditions.
Thus, these methods impose linear constraints with either penalty methods or Lagrange multipliers to enforce the conditions
in some weak sense. For example, see [44–46,10] and the references therein. When using Lagrange multipliers, the
Ladyzhenskaya–Babus̆ka–Brezzi inf–sup conditions place stringent limitations on the types of constraints that will retain
optimal convergence rates of the approximation spaces [60,61,49,62,57,46]. Such inf–sup restrictions generally limit the
strength of the Lagrange multiplier space relative to the solution approximation space. For certain elements, designing
the proper approximation spaces is a non-trivial task [57,55]. Moreover, the use of Lagrange multipliers requires the solution
of an indefinite saddle-point system that can potentially introduce significant cost. Applying stabilization through a consis-
tent penalty method, such as Nitsche’s method, presents an alternative approach [10,50,46,8]. However, these can have ad-
verse effects on conditioning and require the determination of the stabilization parameters. Instead of using Lagrange
multipliers or stabilization, the methods of [63–66,41] alter the basis functions to either satisfy the constraints directly,
or simplify the process of doing so. In this regard, such methods represent the finite element analogues of the IIM, especially
[41,65,66].

The method of [67] offers a finite volume approach to embedded boundary problems. Like some fictitious domain meth-
ods, XFEM and our virtual node method, this method uses partially empty cells along the boundary. However, the one-sided
quadratic interpolations used to compute the fluxes along the boundary yield a non-symmetric system. See [68] for a more
recent 3D version applied to Poisson’s equation and the heat equation. In [69], Oevermann and Klein proposed a second order
finite volume method for interface problems, and simplified and extended their method to 3D in [70]. In an approach similar
to ours, any Cartesian cell that intersects the interface yields a distinct bilinear (or trilinear) representation of the solution.
The jump conditions are then built into the difference stencil by locally solving constrained overdetermined systems. An
asymptotic technique resolves the problem of vanishing cell volumes, though it requires specific treatment for each possible
cell geometry. The resulting system is non-symmetric for the general case of [b] – 0.

When [b] – 0 the majority of these second order methods do not retain a symmetric positive definite stencil. While the
FEM approaches that use stabilization do retain a symmetric positive definite discretization [10], generally the FEM that use
Lagrange multipliers, such as [53], result in a symmetric indefinite discretization. Although we use Lagrange multipliers, we

1 See [59] for corrections to IIM convergence estimates.
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present a simple method of reducing the indefinite system to a symmetric positive definite system using a null-space meth-
od. On the other hand, when the coefficient b is smooth across the interface, methods such as the original IIM achieve second
order accuracy by only altering the right hand side of the system. For this case, we present a method that uses the virtual
node framework that also retains the original left hand side.

3. Description of numerical method

Our method naturally handles both interfacial discontinuities and irregular domains embedded in a Cartesian grid. In fact,
a slight modification of our approach to embedded boundary conditions yields our method for interfacial discontinuities.
Furthermore, our treatment of embedded Dirichlet boundary conditions is just a slight modification of our treatment of
embedded Neumann boundary conditions. Therefore, we first present our method for embedded Neumann boundary con-
ditions followed by our method for Dirichlet boundary conditions and then finally present our approach to interfacial
discontinuities.

3.1. Embedded Neumann

Our approach to solving embedded Neumann problems is very similar to that proposed by Almgren et al. in [47], as well
as some XFEM approaches, e.g. [53]. The recent methods proposed in [42,43] are comparable in accuracy to our method and
are straightforward to implement.

Similar to [47], we discretize the embedded Neumann problem,

�r � ðbðxÞruðxÞÞ ¼ f ðxÞ; x 2 X; ð6Þ
bðxÞru � n ¼ qðxÞ x 2 @X; ð7Þ

over a regular Cartesian grid (one that does not have to conform to @X) using the energy minimization form of (6) and (7):

over all u 2 H1ðXÞ; minimize

EðuÞ ¼ eðuÞ � ðf ;uÞX � ðq;uÞ@X ¼
Z

X

1
2
ru � brudx�

Z
X

fudx�
Z
@X

qudS: ð8Þ

We begin by embedding the domain X in a regular Cartesian grid Gh with grid-spacing Dy = Dx = h. We include all Cartesian
cells (or elements) ck that intersect X in the discretization, and refer to this set Ch ¼ fck \X – ;g � Gh as the ‘‘computational
domain” (see Fig. 2). Also, we define the set of all cells that intersect the boundary as Ch

@X ¼ fck \ @X – ;g � Ch. We define the
solution space Vh � H1(X) as the space of continuous functions that are bilinear over each cell ck 2 Ch. This approximation
includes some partially empty cells that intersect the boundary and introduces ‘‘virtual” grid nodes (and virtual degrees
of freedom) that lie outside of the domain. See Fig. 3 for a diagram labeling the degrees of freedom along a typical boundary.
We refer to the portion of the cell that lies in the domain X as the ‘‘material” region, and use the term ‘‘material” nodes to
describe grid nodes lying inside X. For uh 2 Vh, we write uhðxÞ ¼

Pn
i¼1uiNiðxÞ for ~u ¼ ðu1; . . . ;unÞ 2 Rn where Ni(x) are the

standard piecewise bilinear interpolation basis functions associated with the grid nodes. Here, n denotes the number of
degrees of freedom in the discretization and corresponds to the number of grid nodes that compose the cells of Ch.

Using the virtual node representation, we define a discrete energy Eh(uh) over uh 2 Vh. Although we could discretize the
energy directly with the piecewise bilinear representation, this would result in a second order 9-point stencil away from the
interface (as in [47]). To retain the standard 5-point difference stencil away from the boundary we use different definitions of
the energy over Ch n Ch

@X and Ch
@X,

Fig. 2. Embedding X in a Cartesian grid. The computational domain consists of all cells ck 2 Gh that intersect X. Such cells are outlined in bold. This
procedure introduces virtual degrees of freedom into the discretization, namely those nodes in the bold grid that do not lie in the shaded domain X itself.

6408 J. Bedrossian et al. / Journal of Computational Physics 229 (2010) 6405–6426
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EhðuhÞ ¼
X

ck2ChnCh
@X

eck ðuhÞ � ðf ; uhÞck
X þ

X
ck2Ch

@X

~eck ðuhÞ � ðf ;uhÞck
X � ðq;uhÞck

@X; ð9Þ

where the superscripts denote restriction to cell ck. Over cells ck 2 Ch n Ch
@X that do not intersect the boundary, we define

eck ðuhÞ as

eck ðuhÞ ¼ bh2

4
uiþ1;j � ui;j

h

� �2
þ ui;jþ1 � ui;j

h

� �2
þ uiþ1;jþ1 � uiþ1;j

h

� �2
þ uiþ1;jþ1 � ui;jþ1

h

� �2
� �

: ð10Þ

Here �b denotes the cell average, and {up,q} denote the degrees of freedom at the four corners of the cell. If a cell ck 2 Ch
@X, i.e.

the cell intersects the boundary, then we use the Cartesian bilinear representation to define ~eck ðuhÞ. If we let {Np,q} denote the
bilinear basis functions associated with the four corners of the cell, this yields the discretization

~eck ðuhÞ ¼ 1
2

X
r;s;r0 ;s02f0;1g

uiþr;jþsuiþr0 ;jþs0

Z
ck\X

�brNiþr;jþs � rNiþr0 ;jþs0 dx: ð11Þ

We evaluate the integrals analytically using the divergence theorem based on a polygonal representation of @X as in Alm-
gren et al. [47]. See Fig. 4 and Section 4 where the procedure is described in more detail. The tilde denotes the different dis-
cretizations of the energy over cells that intersect the boundary. Notice we evaluate each integral only over the portion of the
cell that lies within the domain. Similarly, as in [69,70] we define the cell average b as the average only over ck \X. We dis-
cretize the other forms cell-wise as

ðf ;uhÞck
X ¼

X
r;s2f0;1g

uiþr;jþs

Z
ck\X

�f Niþr;jþs dx; ð12Þ

ðq;uhÞck
@X ¼

X
r;s2f0;1g

uiþr;jþs

Z
ck\@X

�qNiþr;jþs dS: ð13Þ

Fig. 4. Polygonal representation of @X. We compute the modified stencil analytically by using the divergence theorem on the material region X \ ck in each
cell. Here, pn(x) and qn(y) denote appropriate polynomials of order n in a single variable. Notice the relatively small area of the material region in the top,
right cell. As this area approaches zero, the virtual node at the top, right of this cell introduces ill-conditioning into the stiffness matrix.

(a) (b)

Fig. 3. Illustration of the interior and boundary stencils. The black degrees of freedom have a modified stencil; the stencil is unaltered at the white degrees
of freedom. On the left, the nodes marked with an X contribute a non-zero entry to the stencil for the center node via the cell-wise energies. The right figure
depicts the 5-point stencil for the center node that results from the definition of ecki .

J. Bedrossian et al. / Journal of Computational Physics 229 (2010) 6405–6426 6409
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Here �f is the average source over ck \X and �q is the average normal flux over ck \ @ X. Again, we evaluate the integrals ana-
lytically, applying the divergence theorem where necessary. We minimize the discrete energy (9) by solving the linear
system

A~u ¼~f ; ð14Þ

Aij ¼
@2

@ui@uj
EhðuhÞ; ð15Þ

fi ¼
@

@ui
ððf ;uhÞX þ ðq;uhÞ@XÞ ð16Þ

for the vector~u. We use the standard FEM term ‘‘stiffness matrix” to refer to the matrix A, and it is clear from the derivation
that A is symmetric and positive semi-definite. With this approach, our definition of the energy (11) results in a slightly den-
ser stencil near the boundary, as all four degrees of freedom in a cell couple together if @X passes through that cell. See Fig. 3
for a graphical depiction of the stencil definitions and the sparsity pattern of the stiffness matrix. In Section 4, the practical
construction of A and~f is given in more detail.

We should note that the conditioning of the stiffness matrix may deteriorate when cells have very small material regions.
This arises from the increasing irrelevance of virtual degrees of freedom (see the upper right node in Fig. 4). The respective
row and column in A and the corresponding entry in~f all approach zero simultaneously, however simple Jacobi precondi-
tioning eliminated serious conditioning issues in our numerical experiments.

3.2. Embedded Dirichlet

In this section, we detail how a slight modification of our embedded Neumann approach allows us to solve embedded
Dirichlet problems

�r � ðbðxÞruðxÞÞ ¼ f ðxÞ; x 2 X; ð17Þ
u ¼ pðxÞ x 2 @X; ð18Þ

within our virtual node framework. Although alternatives that are easier to implement exist for this particular problem, for
instance [35], a straightforward combination of our embedded Neumann and embedded Dirichlet approaches yields our
method for embedded interface problems. This results in a method that encapsulates all types of boundary conditions in
a unified framework.

For the embedded Dirichlet case, we use the constrained minimization problem:

over all u 2 H1ðXÞ; minimize
EðuÞ ¼ eðuÞ � ðf ;uÞX such that ð19Þ
ðu;lÞ@X ¼ ðp;lÞ@X 8l 2 H�1=2ð@XÞ: ð20Þ

We discretize the energy (19) exactly as in the Neumann case, so the only difference comes in discretizing the constraints
(20). We proceed by selecting a finite dimensional subspace Kh � H�1/2(@X), and enforce (20) for all lh 2Kh. Not all plausible
choices will yield an acceptably accurate approximation, as in general (Kh,Vh) must satisfy an inf–sup stability criterion to
retain the optimal convergence rates of the approximation spaces [61]. One suitable choice for Kh, used for instance by the
XFEM [58], defines lh as piecewise constant over the intersection of @X with each Cartesian cell (see Fig. 5). In other words,
we define lh 2Kh as

lhðxÞ ¼
X

ci2Ch
@X

livci\@XðxÞ;

where the sum ranges over all Cartesian cells ci that intersect the boundary ci 2 Ch
@X

� �
and the characteristic functions vci\@X

are given by

vci\@XðxÞ ¼
1; x 2 ci \ @X;
0; x R ci \ @X:

�

With this choice of Kh, satisfying (20) for all lh yields a set of sparse linear constraints B~u ¼~p on the coefficient vector of the
approximate solution uh. Each row of the matrix B corresponds to a Cartesian cell ci 2 Ch

@X (see Fig. 5), and enforces the
conditionZ

ci\@X
uhðxÞdS ¼

Z
ci\@X

pðxÞdS:

Therefore, if Ch
@X ¼ fc1; . . . ; cmg and ~u 2 Rn, then B 2 Rm�n and

Bij ¼
Z

ci\@X
NjðxÞdS

6410 J. Bedrossian et al. / Journal of Computational Physics 229 (2010) 6405–6426
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for each Cartesian bilinear basis function Nj(x). The corresponding entry in ~p is

pi ¼
Z

ci\@X
pðxÞdS:

Again, we compute these integrals analytically. Discretizing (19) and (20) thus gives rise to the quadratic program:

minimize over ~u 2 Rn

EhðuhÞ ¼ eðuhÞ � ðf ;uhÞX ¼
1
2
~utA~u� ~f t~u

subject to B~u ¼~p

ð21Þ

The matrix A and the vector~f carry over exactly from the embedded Neumann case described in Section 3.1.
Unfortunately, solving this problem efficiently can require some care. While many approaches exist for solving minimi-

zation problems of the form (21) or the equivalent saddle-point system

A Bt

B 0

 !
~u
~k

� �
¼

~f
~p

 !
;

we use a null-space method to retain a symmetric positive definite discretization. See [71] for a survey of alternative ap-
proaches. For any matrix Z whose columns span the null-space of B, and any vector~c satisfying B~c ¼~p,

~u ¼~c þ ZðZtAZÞ�1Ztð~f � A~cÞ ð22Þ

uniquely solves (21). Therefore, given a null-basis Z and a particular solution~c 2 Rn satisfying B~c ¼~p, we solve the quadratic
program (21) by solving the symmetric positive definite system ZtAZ~v ¼ Ztð~f � A~cÞ. The null-space of A is spanned by the
vector ð1;1; . . . ;1Þt 2 Rn and the entries of B are all non-negative so kerðAÞ \ kerðBÞ ¼ f~0g. Therefore, ZtAZ > 0 so we can
use straightforward methods such as Conjugate Gradient to solve the symmetric positive definite linear algebra problem.
However, obtaining Z through computational methods such as QR factorization or the SVD can prove costly, and moreover
produce dense representations of Z.

A fundamental basis presents an alternative to numerical factorization [71]. The matrix B is full rank if and only if an order-
ing of the degrees of freedom exists so that B = (BmjBn�m) for some m �m non-singular matrix Bm. Any such ordering gives
the corresponding fundamental basis

Z ¼ �B�1
m Bn�m

In�m

 !
: ð23Þ

Clearly, BZ = 0 and~c ¼ B�1
m
~p

0

� �
satisfies B~c ¼~p. Therefore, if we can solve systems of the form

Bm~x ¼~d; ð24Þ

efficiently, we can store the factors Bm, Bn�m, A sparsely and compute the action of ZtAZ readily (e.g. for use in Conjugate Gra-
dient). Note that, regardless of the choice of Bm, the symmetric positive definite stencil defined by ZtAZ coincides with the
standard 5-point stencil for all degrees of freedom sufficiently far from the interface.

(a) (b)

Fig. 5. Lagrange multiplier spaces. On the left: functions in Kh are piecewise constant over the intersection of the boldly outlined cells ci 2 Ch
@X with the

boundary @X. On the right: functions in K2h are piecewise constant over the intersection of the coarser bold cells ĉi 2 C2h
@X with the boundary @X. In the

image on the right, the bold black lines mark the cells ĉi 2 G2h .
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We now show that the rows and columns of the matrix B can be re-ordered to produce a non-singular, upper triangular
matrix Bm. Specifically, ordering the cut-cells fc1; . . . ; cmg ¼ Ch

@X lexicographically, and then selecting the lower-left node of
the ith cut-cell as the ith degree of freedom (thus re-ordering the rows in A, B and ~u), gives B = (BmjBn�m) with Bm upper tri-
angular and non-singular (see Fig. 6). Unfortunately, despite the convenient triangular structure of Bm, prohibitively large
numerical error persists when solving (24), even on relatively coarse grids. As the interface in a given cell recedes from
the lower-left node of that cell (for instance, cells and nodes 1, 4, 5, 9, 11, 14, 17, 18, 19, 21, 22, 23, or 29 in Fig. 6), the cor-
responding row in Bm has off-diagonal entries with substantially larger magnitude than the diagonal entry of that row. Gen-
erally, enough rows of this type exist so that Bm behaves much like the matrix

C ¼

1 2 0 0 � � � 0
0 1 2 0 � � � 0
..
. . .

. . .
. . .

. . .
. ..

.

0 � � � 0 1 2 0
0 � � � � � � 0 1 2
0 0 � � � � � � 0 1

0
BBBBBBBBB@

1
CCCCCCCCCA
:

Considering the linear system Cx ¼ ~em with ~em ¼ ð0; . . . ;0;1Þt illuminates the source of this error. Indeed, in this case
kC�1 ~emk1 grows like 2m. The forward substitutions with Bt

m, needed for Zt multiplies, also exhibit this behavior. As m in-
creases under grid refinement, these behaviors quickly (in some cases, anything finer than a 64 � 64 grid) dominate machine
precision. In practice, scalar multiples of ~em always appear in Bn�m, making such a Bm practically unusable in a null-space
method. Moreover, this problem persists in all similar constructions of Bm (different orderings, node choices, etc.).

For this reason, we use an alternative approximation to H�1/2(@X) that produces a different set of linear constraints. Our
choice permits an ordering of B with a non-singular, diagonal sub-matrix Bm. If we enforce one constraint per cell as above,
then in general there do not exist m degrees of freedom that each only participate in one constraint, so that no ordering could
produce a diagonal matrix Bm. Motivated by this observation, we approximate H�1/2(@X) using K2h, the space of Lagrange
multipliers corresponding to the grid G2h. That is, for every lh 2K2h,

lhðxÞ ¼
X

ĉk2C2h
@X

lkvĉk\@XðxÞ:

Thus, each row of B now enforces the condition

Z
ĉk\@X

uhðxÞdS ¼
Z

ĉk\@X
pðxÞdS;

for each of the cells ĉk 2 C2h
@X ¼ fĉ1; ĉ2; . . . ; ĉmg (see Fig. 5) that intersect the boundary. In the figure, each of the cells in the grid

G2h is the union of four cells in the grid Gh, so that at the center of each cell ĉk 2 G2h lies a degree of freedom uk whose asso-
ciated nodal basis function Nk vanishes outside the cell ĉk. Therefore for each cell ĉk 2 C2h

@X we choose this central degree of
freedom as the kth in our re-ordering. As such,

(a) (b)

Fig. 6. Upper triangular ordering. The cell-centered numbers in figure (a) indicate the ordering of the cells ck 2 Ch
@X . The nodal numbers in figure (b) indicate

the corresponding ordering for the first nine degrees of freedom.
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Z
ĉi\@X

Nk dS ¼ 0; 8i – k; 1 6 i 6 m: ð25Þ

See Fig. 7 for a pictorial description of this ordering. Clearly, this gives B = (BmjBn�m) with Bm diagonal and non-singular. We
then use the corresponding fundamental basis (23) to trivially reduce the saddle-point problem to the symmetric positive
definite system ZtAZ~v ¼ Ztð~f � A~cÞ by applying the null-space method (22).

3.3. Embedded interface

To handle the full elliptic interface problem (1)–(3), we combine our embedded Neumann and embedded Dirichlet ap-
proaches in a straightforward way. We consider the equivalent minimization form of the problem (1)–(3):

over all u 2 V ¼ fu : u� 2 H1ðX�Þg; minimize

EðuÞ ¼ eðuÞ � ðf ;uÞX � ðb; �uÞC ¼
Z

Xþ[X�

1
2
ru � brudx�

Z
X

fudx�
Z

C
b�udS ð26Þ

such that ð½u�;lÞC ¼ ða;lÞC 8l 2 H�1=2ðCÞ: ð27Þ

Here �uðxÞjC ¼ ðuþ þ u�Þ=2. As before, we define discretizations of V and H�1/2(C) and then solve the resulting discrete saddle-
point problem. To define Vh � V, we separately discretize H1(X+) and H1(X�) using the same virtual node representation
used to discretize the embedded Neumann problem. This will naturally introduce duplicate Cartesian cells that intersect
the boundary, with independent copies associated with the interior and exterior discretizations (see Fig. 8). This discretiza-
tion results in the block diagonal stiffness matrix for the interface problem,

A ¼ Aþ 0
0 A�

 !
;

where A+ is the stiffness matrix associated with the embedded Neumann problem on X+ and A� is the stiffness matrix asso-
ciated with the embedded Neumann problem on X�, as described in Section 3.1.

Similarly, along the interface we make the same choice of discrete Lagrange multiplier space as before, so that over every
cell ĉk 2 C2h

C ,

Z
ĉk\C
½uh�dS ¼

Z
ĉk\C

adS:

This results in the block interface constraint matrix B = (B+j�B�), where B± is respectively the constraint matrix associated
with the embedded Dirichlet problem on the exterior or interior of the interface. In other words, Bij ¼

R
ĉi\C

signðjÞNjðxÞdS,
where sign(j) = 1 if degree of freedom j is associated with u+,h and sign(j) = �1 if degree of freedom j is associated with
u�,h. These discretization choices give the saddle-point problem

(a) (b)

Fig. 7. Diagonal ordering scheme. We enforce one constraint per coarse cell, enumerated in the image on the left. In the image on the right, we index the
degrees of freedom at the centers of the coarse cells by the corresponding constraint indices. This gives a constraint matrix B with a diagonal sub-matrix Bm.
Note that this gives a slightly denser Bn�m, since now as many as nine degrees of freedom may contribute to a given row for embedded Dirichlet problems.
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Aþ 0 Bþt

0 A� �B�t

Bþ �B� 0

0
B@

1
CA

~uþ

~u�

~k

0
B@

1
CA ¼

~fþ

~f�

~a

0
B@

1
CA; ð28Þ

where~uþ contains the degrees of freedom associated with the nodal values of the exterior discretization and~u� contains the
degrees of freedom associated with the nodal values of the interior discretization. We once again solve the saddle-point sys-
tem using the null-space method described above in Section 3.2 by defining an ordering B = (BmjBn�m) with Bm diagonal. Gi-
ven any ordering for the constraints, we choose the virtual degree of freedom at the center of the ith cell ĉi 2 C2h

C as the ith
degree of freedom in our ordering. See Figs. 7 and 8 and Section 3.2 for more information. There are always at least two de-
grees of freedom associated with the center node. We choose the virtual degree of freedom as this results in a system ZtAZ
with significantly better conditioning in practice.

3.3.1. Virtual node discontinuity removal
In general, our proposed method requires the solution of the symmetric positive definite system ZtAZ. However, if the

coefficient b is smooth, the IIM and similar methods achieve uniform second order accuracy without altering the original
5-point difference stencil. In this section, we demonstrate how the virtual node framework similarly allows the use of the
5-point difference stencil for continuous coefficients. For simplicity of exposition, we assume b(x) � 1 for the rest of this
section.

Suppose c(x) 2 V is constructed to satisfy the jump conditions (2) and (3) and u(x) is the exact solution. Then as [b] = 0, the
difference w(x): = u(x) � c(x) satisfies [brw � n] = b[rw � n] = 0 and [w] = 0. Since w satisfies homogeneous jump conditions

(a) (b) (c)

(d)

Fig. 8. In (a), the degrees of freedom lying on shaded cells define u�,h, and in (b), the degrees of freedom lying on dashed cells define u+,h. Applying our
embedded Neumann approach on the shaded and dashed grids defines the matrices A� and A+, respectively. Degrees of freedom associated with u�,h and u+,h

are collocated along the interface. These representations couple together in the coarse cells outlined in figure (c). Figure (d) depicts the overlapping domains
of definition of u�,h and u+,h in the coarse cells.
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[rw � n] = 0 and [w] = 0, we do not require virtual nodes to capture any discontinuities across C. In this manner, solving for w
presents an appealing alternative as the presence of virtual nodes no longer adversely affects the subsequent linear algebra
problem. Therefore, when [b] = 0 we recover an approximation to (2) and (3) by separately discretizing w and c, then setting
u = w + c.

We discretize w over the unduplicated grid Gh using H1(X) Cartesian piecewise bilinear elements. Consequently, if the
grid Gh contains r material degrees of freedom, then ~w 2 Rr contains the coefficients in terms of the bilinear basis. We dis-
cretize u and c using the full virtual node basis Vh as they possesses lower regularity across C. With these choices, we can
represent the coefficient vector ~u 2 Rn (n > r) of the approximate solution uh in the basis of Vh as~u ¼~c þ T~w, where the ma-
trix T 2 Rn�r maps from the bilinear basis to the virtual node basis. We determine this change of basis by a simple identifi-
cation of virtual and material nodes, as a function vh 2 Vh satisfies homogeneous jump conditions if and only if the value of
the function vh at a virtual node always equals its value at the associated material node. Therefore, T maps the value at a
given node in the original grid to every node, virtual or material, associated with the same location in the virtual node basis.

Although any ordering of degrees of freedom will suffice to construct T, for simplicity assume that

~u ¼ ðu1;u2; . . . ;unv ; unvþ1;unvþ2; . . . ;u2nv ;u2nvþ1; . . . ;unÞt :

Here, fukgnv
k¼1 represent the nv: = n � r total coefficients of the virtual degrees of freedom; unvþk, 1 6 k 6 nv, represents the

coefficient of the real degree of freedom corresponding to the same physical node as uk; the remaining fukgn
k¼2nvþ1 degrees

of freedom do not lie on any cut-cells. Then

T ¼
Inv 0
Inv 0
0 In�2nv

0
B@

1
CA: ð29Þ

More generally, each column of T corresponds to a material node in the grid, and each row of T corresponds to either a mate-
rial node or a virtual node. Then the column of T corresponding to a material node xl simply has a one in the column cor-
responding to xl, a one in the column corresponding to any virtual node in the same physical location (i.e. coordinates) as
xl, and zeros otherwise.

Determining wh now proceeds in a manner analogous to the null-space method used to solve (21): we wish to minimize
the energy over all vectors of the form ~u ¼~c þ T~w. For the following discussion, suppose we define the discrete energy (26)
using the Cartesian bilinear representation everywhere in the domain. Then substituting the expression for~u into the energy
(26) gives

Ehð~uÞ ¼ 1
2
~wtTtAT~w� ~f tT~wþ ~wtTtA~c þ 1

2
~ctA~c � ~f t~c; ð30Þ

which defines an energy only over the original, material degrees of freedom ~w 2 Rr . Differentiation with respect to wi then
leads to the linear system

TtAT~w ¼ Ttð~f � A~cÞ; ð31Þ
~u ¼~c þ T~w: ð32Þ

Remarkably, the matrix TtAT is the straightforward discretization over the material degrees of freedom, i.e. a 9-point, second
order approximation to the Laplacian. Moreover, as ~w corresponds to the material nodal values on a regular grid, we may
operate on it instead with the standard 5-point difference stencil Dh and solve the system

Dh~w ¼ Ttð~f � A~cÞ ð33Þ

to provide an approximate solution at all of the relevant real degrees of freedom. This approach allows the application of
efficient, black-box solvers for Dh and only requires constructing the right hand side of (33). Thus, the lack of regularity
in the problem no longer adversely affects the linear algebra.

In principle, many different constructions could result in a satisfactory particular solution c. To minimize the computa-
tional effort, we construct a c supported only along the interface. The time required to generate such a particular solution
contributes negligibly to the overall computational cost. We assume that X� does not intersect the computational boundary
and construct a particular solution c that vanishes on the exterior region. That is, cjXþ ¼ 0 so that cj@X = 0, [c] = � c� = a,
b[rc � n] = �brc� � n = b. Therefore, we need only to define c� over those interior material and interior virtual nodes along
the interface, and do so by straightforward extrapolation.

4. Implementation

In this section we detail a sample implementation of our method with the interface represented as a level set /, where
X = {/ < 0} for irregular domain problems and X� = {/ < 0} for embedded interface problems. We describe the implementa-
tion for the embedded Dirichlet case X = {/ < 0}, since the interface case is analogous.
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First, we define the computational domain as those cells ck ¼ fxk1 ;xk2 ;xk3 ;xk4gwhere /ðxki
Þ < 0 for at least one node xki

. If
/ðxki

Þ < 0 for all 1 6 i 6 4 then ck lies in Ch n Ch
@X. Otherwise, the cell ck lies in Ch

@X. That is,

Ch ¼ fck ¼ fxk1
;xk2

; xk3
; xk4
g : /ðxki

Þ < 0 for at least one ig; ð34Þ
Ch
@X ¼ fck 2 Ch : /ðxki

Þ > 0 for at least one ig; ð35Þ
Ch n Ch

@X ¼ fck 2 Ch : /ðxki
Þ < 0;8ig: ð36Þ

Next, we assemble the stiffness matrix A, the constraint matrix B, and the vectors~f and~a by looping over the cells ck 2 Ch. The
boundary contribution is described in Step 1 and the interior contribution is described in Step 2. Notice that if a node is not
adjacent to any cell which is intersected by the boundary then the 5-point stencil is used.

Step 1. Adding boundary contribution to A;~f and B

for ck 2 Ch
@X do

for 1 6 i, j 6 4 do
Akikj
þ ¼ �b

R
X\ck
rNki

� rNkj
dx {see Fig. 4 for integration details}

end for
for 1 6 i 6 4 do

fki
þ ¼ �f

R
X\ck

Nki
dx {see Fig. 4 for integration details}

l index of the coarse cell containing ck {see Fig. 7}
Blki
þ ¼

R
ck\@X Nki

dS

alþ ¼ �a
R

ck\@X Nki
dS

end for
end for

Step 2. Adding interior contribution to A and~f

for ck 2 Ch n Ch
@X do

for 1 6 i 6 4 do
Akiki
þ ¼ �b

fki
þ ¼ :25h2�f

for 1 6 j 6 4 do
if xki

– xkj
and are edge connected then

Akikj
� ¼ :5�b

end if
end for

end for
end for

We compute the area integrals using a polygonal representation of X \ ck and the divergence theorem. The set of vertices
of the polygon consists of all nodes with / < 0, as well as the two crossings xc on the edges of the cell (see Fig. 4). Given a pair
of nodes xki

and xkj
with /ðxki

Þ/ðxkj
Þ < 0, we compute the edge crossing as

h ¼ /ðxki
Þ

/ðxki
Þ � /ðxkj

Þ ;

xc ¼ xkj
hþ xki

ð1� hÞ:

The divergence theorem converts the area integral of the second order polynomials rNki
� rNkj

over the irregular polygon
into a line integral of third order polynomials over the polygonal boundary (see Fig. 4). The integrals of the bilinear functions
Nki

over @X \ ck are line integrals over the segment joining the two edge crossings. The simple low-order polynomials are
integrated over each segment analytically.

The averages �f ; �b and �a are also required. When f is known at nodes, we use bilinear interpolation to represent it over a
cell ck, f jck

¼
P4

i¼1fki
Nki
ðxÞ. Then �f may be computed by integrating this bilinear function over the material region and divid-

ing by the area. These integrals are computed as an area integral using the divergence theorem as above. Thus the average �f
is,
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�f ¼
P4

i¼1fki

R
X\ck

Nki
dx

AreaðX \ ckÞ
¼
P4

i¼1fki

R
X\ck

Nki
dxP4

i¼1

R
X\ck

Nki
dx

: ð37Þ

With A and B in hand, we re-order the degrees of freedom so that B = (BmjBn�m) with Bm diagonal and non-singular. This
amounts to finding the index ki of the degree of freedom at the center of the lth coarse cell, then permuting the degrees
of freedom with indices l and ki (see Fig. 7). Once we have re-ordered the degrees of freedom, the fundamental basis Z
and reduced constraints~c can be easily computed (23). We then solve the system ZtAZ~v ¼ Ztð~f � A~cÞ iteratively, performing
multiplications with Z,Zt implicitly using the factors Bm and Bn�m, and lastly recover the solution ~u ¼~c þ Z~v .

5. Numerical examples

This section presents a convergence test for each of the components of our method. We first demonstrate the expected
second order accuracy for embedded Neumann and embedded Dirichlet problems in Sections 5.1 and 5.2, respectively, and
for interface problems in Section 5.3. In Sections 5.3.2 and 5.3.3 we examine the performance of our method for the impor-
tant special case when b exhibits a large jump across the interface. Lastly, in Section 5.4 we demonstrate the effectiveness of
this discontinuity removal technique on a C0 Lipschitz segmented curve. The richer virtual node representation, as in Fig. 19,
allows us to achieve second order results for a non-smooth interface while still retaining the standard 5-point finite differ-
ence stencil.

We ran all of the examples on a sequence of N � N grids, for 80 6 N 6 800. Each grid ranges from �1 6 x 6 1, �1 6 y 6 1.
The error plots depict log10kekL1 versus log10N. The examples include both level set representations and Lagrangian repre-
sentations of the interface. For interfaces that have more detail than the background grid can resolve, using a level set intro-
duces non-negligible geometric regularization. See Section 6 for a discussion of the geometric precision of our method.

5.1. Embedded Neumann

We demonstrate the method applied to the embedded Neumann problem

�r � bðxÞru ¼ f ; 8x 2 X;

bðxÞru � n ¼ qðxÞ; 8x 2 @Xn:

Here b(x) = 4 + x + y. We chose the parameters q and f using the exact solution

u ¼ ðx3 � y3Þ cosðxþ yÞ:
The embedded Neumann boundary, @Xn, is given by the 5-pointed star with vertices

t0 ¼ :1243;
ri ¼ :35þ :3ðimod2Þ;

Xi ¼ ri cos
pi
5
þ t0

� �
;

Yi ¼ ri sin
pi
5
þ t0

� �
;

for 1 6 i 6 10, represented as a Lagrangian curve. See Fig. 9 for the error plot. A least squares regression estimates the order of
accuracy as 1.95.

5.2. Embedded Dirichlet

We demonstrate the method applied to the embedded Dirichlet problem

Du ¼ 0; 8x 2 X;

u ¼ pðxÞ; 8x 2 @Xd ¼ @X:

We chose the Dirichlet condition p using the chosen exact solution

u ¼ x2 � y2:

The embedded boundary @X is given by the curve

t0 ¼ :00132;

r0 ¼ :02
ffiffiffi
5
p

;

rðtÞ ¼ :5þ :2 sinð5tÞ;
XðhÞ ¼ r0 þ rðhþ t0Þ cosðhþ t0Þ;
YðhÞ ¼ r0 þ rðhþ t0Þ sinðhþ t0Þ;
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represented as a Lagrangian curve. See Fig. 10 for the error plot. A least squares regression estimates the order of accuracy as
1.86.

5.3. Embedded interface

5.3.1. Embedded interface example 1
We demonstrate the method applied to the embedded interface problem

�r � ðbðxÞruÞ ¼ f ðxÞ; 8x 2 X n C;

½u� ¼ aðxÞ;
½bðxÞru � n� ¼ bðxÞ; 8x 2 C:

(a) Estimated order: 1.95

−1

0

1

−1−0.500.51

−1.5

−1

−0.5

0

0.5

1

1.5

(b) Embedded Neumann problem 
on an exterior domain

Fig. 9. Numerical results for example Section 5.1.

(a) Estimated order: 1.86

−0.5
0

0.5

−0.5

0

0.5
−0.5

0

0.5

(b) Embedded Dirichlet problem 
on an interior domain

Fig. 10. Numerical results for example Section 5.2.
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Here b(x) = 4 + sin(x + y) in the interior and b(x) = 2 + x2 + y2 in the exterior. We chose the parameters a, b and f using the
exact solution

u� ¼ cosðyÞ sinðxÞ;
uþ ¼ 1� x2 � y2:

The interface is given by the curve parametrized by

t0 ¼ :45234;
hðtÞ ¼ t þ sinð4tÞ;
rðtÞ ¼ :60125þ :24012 cosð4t þ p=2Þ;
XðtÞ ¼ rðt þ t0Þ cosðhðt þ t0ÞÞ;
YðtÞ ¼ rðt þ t0Þ sinðhðt þ t0ÞÞ

for 0 6 t 6 2p represented with a level set. See Fig. 11 for a plot of the error in the solution and in the gradient evaluated on
the interface. A least squares regression estimates the order of accuracy of the solution as 1.92 and the order of accuracy of
the gradient as.96. The gradient was evaluated point-wise at the mid-point xM of the interface segment in each cell by dif-
ferentiating the bilinear basis elements, that is, ruðxMÞ ¼

P4
i¼1uirNiðxMÞ.

5.3.2. Embedded interface example 2
In this example we examine the performance of the method in the case of when the coefficient b has a large jump across

the interface. The following example was taken from [32]. We solve the interface problem

r � bðxÞru ¼ f ; 8x 2 X n C;

½u� ¼ aðxÞ;
½ru � n� ¼ bðxÞ; 8x 2 C:

Here we take the coefficient to be piecewise constant, b(x) = b+ in the exterior and b(x) = b� on the interior. We chose the
parameters a, b and f using the exact solution

u� ¼ x2 þ y2;

uþ ¼ :1ðx2 þ y2Þ2 � :01 lnð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ:

The interface C is given by the curve used in example Section 5.2,

t0 ¼ :00132;

r0 ¼ :02
ffiffiffi
5
p

;

rðtÞ ¼ :5þ :2 sinð5tÞ;
XðtÞ ¼ r0 þ rðt þ t0Þ cosðt þ t0Þ;
YðtÞ ¼ r0 þ rðt þ t0Þ sinðt þ t0Þ;

(a) Estimated order: 1.92 for solution (solid line) and .96 for
gradient along the interface (dotted line)

−1
−0.5

0
0.5

1
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0
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−0.5

0

0.5

1

(b) Embedded interface problem with 
discontinuous coefficients

Fig. 11. Numerical results for example Section 5.3.
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for 0 6 t 6 2p. See Figs. 12 and 13 for a plot of the error for three values of the ratio b�:b + �, 1:10, 1:1000 and 1000:1. A least
squares regression estimated the order of accuracies as 1.94 for 1:10, 1.86 for 1:1000 and 1.77 for 1000:1.

See Fig. 14 for the number of Conjugate Gradient iterations, computer time in seconds and condition numbers of the lin-
ear systems before and after incomplete Cholesky preconditioning. Fig. 14 compares the performance to the standard 5-point
Laplacian on a square with no interface as a reference. All tests were run with grid resolution 800 � 800 and to residual norm
tolerance of 10�12. The linear system was solved using the PETSc Conjugate Gradient with the PETSc incomplete Cholesky

(a) Estimated order: 1.94, 1 : 10

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1
0

0.5

1

(b) Embedded interface problem with 
high contrast coefficients

Fig. 12. Numerical results for example Section 5.3.2.

Fig. 13. Numerical results for example Section 5.3.2.

Test case Condition number (before IC) Condition number (after IC) PCG iterations Time (sec)
1:1 7.60x105 3.42x104 1106 95.19

1000:1 4.43x108 2.13x107 1803 157.45
1:1000 6.45x105 4.59x104 1751 150.27

5-point stencil 2.58x105 2.28x104 723 60.23

Fig. 14. Condition numbers of linear system and clock time of PCG at resolution 800 � 800 for example Section 5.3.2.
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preconditioner [72–74]. The code was run in serial on a 2.8 GHz laptop computer. All linear systems were normalized to have
a constant diagonal before the preconditioner was applied. The high coefficient ratios incur a moderate cost but are still com-
parable to the standard 5-point discretization.

5.3.3. Embedded interface example 3
In this example we again examine the performance of the method in the case of when the coefficient b has a large jump

across the interface. We solve the interface problem

r � bðxÞru ¼ f ; 8x 2 X n C;
½u� ¼ aðxÞ;
½ru � n� ¼ bðxÞ; 8x 2 C:

Here we take the coefficient to be piecewise constant, b(x) = b+ in the exterior and b(x) = b� on the interior. We chose the
parameters a, b and f using the exact solution

u� ¼ x2 þ y2 þ 1;
uþ ¼ cosðxþ yÞ:

The interface C is given by the curve,

h0 ¼ :00132;
XðhÞ ¼ :6 cosðhþ h0Þ � :3 cosðhþ h0Þ;
YðhÞ ¼ :47 sinðhþ h0Þ � :0047 sinð3h� 3h0Þ þ :13 sinð7h� 7h0Þ;

for 0 6 h 6 2p. See Figs. 15 and 16 for a plot of the error for three values of the ratio b�:b+, 1:10, 1:1000 and 1000:1. A least
squares regression estimated the order of accuracies as 1.90 for 1:10, 1.64 for 1:1000 and 1.77 for 1000:1.

See Fig. 17 for the number of Conjugate Gradient iterations, computer time in seconds and condition numbers of the lin-
ear systems before and after incomplete Cholesky preconditioning. Fig. 17 compares the performance to the standard 5-point
Laplacian on a square with no interface as a reference. All tests were run with grid resolution 800 � 800 and to residual norm
tolerance of 10�12. The linear system was solved using the PETSc Conjugate Gradient with the PETSc incomplete Cholesky
preconditioner [72–74]. The code was run in serial on a 2.8 GHz laptop computer. All linear systems were normalized to have
a constant diagonal before the preconditioner was applied. The high coefficient ratios incur a moderate cost but are still com-
parable to the standard 5-point discretization.

5.4. Discontinuity removal

We solve the interface problem

� Du ¼ f ; 8x 2 X n C;
½u� ¼ aðxÞ;
½ru � n� ¼ bðxÞ;8x 2 C:

(a) Estimated order: 1.90
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(b) Embedded interface problem with 
high contrast coefficients

Fig. 15. Numerical results for example Section 5.3.3.
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We chose the parameters a, b and f using the exact solution

u� ¼ cosðyÞ sinðxÞ;
uþ ¼ 1� x2 � y2:

Fig. 16. Numerical results for example Section 5.3.2.

Test case Condition number (before IC) Condition number (after IC) PCG iterations Time (sec)
1:1 5.99x105 3.57x104 1082 82.97

1000:1 3.85x108 2.13x107 1802 138.04
1:1000 7.25x105 7.25x104 1915 145.78

5-point stencil 2.58x105 2.28x104 723 60.23

Fig. 17. Condition numbers of linear system and clock time of PCG at resolution 800 � 800 for example Section 5.3.3.

(a) Estimated order: 1.96
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(b) Embedded interface problem solved 
with discontinuity removal

Fig. 18. Numerical results for example Section 5.4.
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The interface is the segmented 5-pointed star with vertices

t0 ¼ :1243;
ri ¼ :35þ :3ðimod2Þ;

Xi ¼ ri cos
pi
5
þ t0

� �
;

Yi ¼ ri sin
pi
5
þ t0

� �
;

for 1 6 i 6 10, represented with a Lagrangian curve. See Fig. 18 for the error plot. A least squares regression estimates the
order of accuracy as 1.96.

6. Discussion and conclusion

Our method uses a virtual node concept coupled with a Lagrange multiplier formulation to approximate the solution of
the elliptic interface problem (1)–(3) and the related embedded Neumann and Dirichlet problems. Notably, the symmetric
positive definite discretization and intuitive, geometric nature of the method make it easy to implement. Numerical exam-
ples demonstrate second order convergence in L1.

Certain FEM approaches that also use virtual nodes [7–10,13,14] parallel our work in spirit and implementation. More-
over, for typical geometric cases, virtual node representations yield the same space as those given by Heaviside enrichment
XFEM approaches [9]. Such methods generally use lower-order triangular elements that do not permit the obvious choice of
Lagrange multiplier space Kh of one constraint per element. Unstructured triangular meshes generally do not achieve second
order accuracy in L1 either. These facts motivate the interest in regular Cartesian bilinear elements that both achieve second
order accuracy in L1 and permit straightforward Lagrange multiplier spaces. For instance, the XFEM approach of [58] that
uses Cartesian bilinear elements with the Lagrange multiplier space Kh also demonstrated second order accuracy in L1.

By design, our choice of Lagrange multiplier space eases the computational effort and memory limitations imposed by the
saddle-point problem at the cost of accuracy, as the pairing (Vh,K2h) results in higher L1 error than the choice (Vh,Kh). Our
numerical experiments indicate that our choice does not sacrifice second order convergence. Generally the approximations
of H�1/2(@X) and H1(X) must satisfy an inf–sup condition uniformly in h for the solution to exhibit optimal convergence
rates. See [61] for several characterizations of the relevant inf–sup conditions. However, as our numerical experiments indi-
cate and the following argument demonstrates, our choice does not sacrifice such inf–sup stability. Assume the pairing
(Vh,Kh) satisfies an inf–sup condition uniformly in h, that is, if there exist c0, h0 > 0 such that, for all h0 P h > 0,

inf
lh2Kh

sup
vh2Vh

aðlh;vhÞP c0

for some function a : H�1=2ð@XÞ �H1ðXÞ ! R. Then whenever 2h 6 h0, as V2h � Vh

c0 6 inf
lh2K2h

sup
vh2V2h

aðlh;vhÞ 6 inf
lh2K2h

sup
vh2Vh

aðlh;vhÞ; ð38Þ

so that our pairing (Vh,K2h) satisfies the same inf–sup condition uniformly in h as well. Moreover, the above argument holds
if we begin with satisfactory constraints on any grid coarser than Gh and then refine the corresponding space to obtain Vh. In
practice, we begin with the matrix B that results from using (Vh,Kh). We then add together any constraints that lie in the
same cell ĉk 2 G2h to arrive at the constraints for the pairing (Vh,K2h). The grid G2h merely serves as an easy means of deter-
mining which rows to sum to obtain a diagonal sub-matrix Bm. In theory, we could sum rows in some other fashion, so long
as the resulting constraint corresponds to an inf–sup stable constraint from a coarser grid.

In our numerical examples we give results using both a level set representation of the interface and a segmented Lagrang-
ian representation of the interface. In principle, our method does not rely upon a particular representation of C. However, for
high curvature interfaces such as the examples of Chen and Strain [27], using a Lagrangian representation results in an inter-
face with significantly more detail than the background grid can resolve. This can result in a grid cell ck 2 Gh that contains
two or more disconnected segments of the interface (see Fig. 19). We found that, in this case, enforcing one constraint per
cell results in unsatisfactory accuracy, and we have yet to attempt to resolve this issue in full. For smooth interfaces, this will
always vanish under refinement, and using a level set representation generally prevents this phenomenon. However, for
complex interfaces, the transfer to a level set involves non-negligible regularization. Moreover, our numerical experiments
suggest we actually must guarantee none of the cells ĉk 2 C2h

C contain disconnected interface segments in order to retain opti-
mal accuracy in the pre-asymptotic regime. As they do not rely on Lagrange multipliers, this does not present a challenge to
either embedded Neumann or our discontinuity removal technique. For instance, in example Section 5.4 we used the richer
virtual node representation, illustrated in the right column of Fig. 19, to appropriately handle the disconnected interface seg-
ments. The case of interface and embedded Dirichlet problems for non-smooth or poorly resolved curves will be treated in
future research.

In our numerical examples, we solve the reduced saddle-point problem with a straightforward application of Conjugate
Gradient with Jacobi preconditioning on examples Sections 5.1, 5.2 and 5.4, and used PETSc Conjugate Gradient with
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incomplete Cholesky preconditioning [72–74] for examples Sections 5.3, 5.3.2 and 5.3.3. The use of our method in practical
applications, such as multiphase fluid dynamics, will require more efficient preconditioning. Moreover, we have not pro-
posed a method for efficiently dealing with large jumps in b at the interface (see Sections 5.3.2 and 5.3.3 for the performance
of the method in this case). Of course, in the discontinuity removal method of Section 3.3.1, fast Poisson solvers may be
applied.
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