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Figure 1: Photographs of five fabrics (canvas, cotton poplin, silk charmeuse, denim and wool coating) along with the corresponding simulation
after parameter estimation (bottom row). Each piece of fabric is 1m ×1m, and the top corners are held 60cm apart. The real fabrics had multiple
stable equilibria for the specified constraints, so exact matches cannot be expected.

ABSTRACT
Accurate estimation of mechanical parameters for simulation of
woven fabrics is essential in many fields. To facilitate this we first
present a new orthotropic hyperelastic constitutive model for wo-
ven fabrics. Next, we design an experimental protocol for charac-
terizing real fabrics based on commercially available tests. Finally,
we create a method for accurately fitting the material parameters
to the experimental data. The last step is accomplished by solving
inverse problems based on a Catmull-Clark subdivision finite ele-
ment discretization of the Kirchhoff-Love equations for thin shells.
Using this approach we are able to reproduce the fully nonlinear
behavior corresponding to the captured data with a small number
of parameters while maintaining all fundamental invariants from
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continuummechanics. The resulting constitutive model can be used
with any discretization (e.g., simple triangle meshes) and not just
subdivision finite elements. We illustrate the entire process with
results for five types of fabric and compare photo reference of the
real fabrics to the simulated equivalents.
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1 INTRODUCTION
Cloth simulation has broad applications ranging from the textile
industry over entertainment to engineering applications such as
fiber reinforcement in composites. In engineering and also for e-
commerce applications such as virtual try-on, predictive power is
obviously of paramount significance. By contrast, absolute accuracy
is typically not a goal in entertainment. For graphics applications, it
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is usually up to an artist to come up with a reasonable set of simula-
tion parameters. Unfortunately, different artists often end up with
different parameters for the same materials and since the approach
is based on trial-and-error it can be difficult to reach satisfactory
results. The desire for easier workflows when setting up simula-
tions and also higher accuracy has motivated many researchers to
look for experimental ways to determine simulation parameters.
The appeal of such data-driven approaches is clear as it potentially
allows for the creation of libraries of material parameters which
can be used repeatedly and augmented as necessary.

In order for a data-driven approach to work, multiple compo-
nents must be in place. First, a sufficiently versatile, accurate and
preferably parsimonious cloth model must be established. Second,
a set of experiments must be designed from which all model pa-
rameters can be estimated. From a practical point of view these
experiments should be reproducible and since most end-users of
cloth simulation are not experts in material testing, it is desirable
that the tests are commercially available through a service bureau.
Finally, a robust fitting method needs to be devised to fit the model
parameters to the experimentally obtained data. In this paper we
endeavor to provide all these components.

There is a plethora of different types of fabrics including knitted
fabrics, woven fabrics, and a variety of specialty fabrics such as lace,
3d-fabrics, and non-wovens. A single model is unlikely to work
well for all these different types of fabric, so in the following we
will focus on woven fabrics. In order to fit a wide range of woven
materials while minimizing mesh dependent behavior, we use a
continuum assumption in our mechanical model. Since real cloth-
ing typically undergoes large deformations including large strains
(especially in the shear component), it is essential to use a fully
nonlinear model. To this end we begin by proposing a generalized
orthotropic model characterized by a small number of parameters
(§3). The orthotropy reflects the basic symmetry present in most
woven fabrics, and by introducing nonlinearity in a way akin to Og-
den’s constitutive model we are able to represent highly nonlinear
behavior using a single model for the entire strain regime.

Much existing work related to characterization of fabrics is based
on the Kawabata system, [Kawabata 1980]. However, these systems
can be hard to find and are quite expensive. A more recent sys-
tem, called FAST for “Fabric Assurance by Simple Testing” is much
cheaper but limited to small strain deformations, [Minazio 1995].
In the graphics literature alternate methods have been proposed,
but most of these require nonstandard equipment. The experimen-
tal protocol we propose, (§4), is largely based on existing ASTM
standards1 along with extensions which can be implemented using
the same instruments as for the standard tests.

Data fitting is conceptually simple, but in practice fraught with
peril. By using a fully implicit method for quasistatic simulation
and by leveraging an infinitely smooth constitutive model, we
are able to provide exact derivatives with respect to the model
parameters in our optimization method based on the Broyden-
Fletcher-Goldfarb-Shanno method (BFGS). Combined with good
initial guesses based on bootstrap estimates this allows us to circum-
vent some of the data fitting challenges experienced in previous
methods. We present our data fitting methodology in §5. All of

1Corresponding ISO standards also exist.

this is based on a Catmull-Clark subdivision finite element (FEM)
discretization of the Kirchhoff-Love thin shell equations which
is outlined in a supplemental document [Clyde et al. 2017]. Al-
though the Kirchhoff-Love thin shell model is rather complex, its
continuum basis is essential for providing parameters that depend
minimally on mesh resolution and associated discrete anisotropy.
Furthermore, we emphasize that the Kirchhoff-Love assumption,
as well as the subdivision basis for FEM while useful for the fitting
process are not necessary in practical simulation since the consti-
tutive model can be used with simple linear strain triangles and
commonly used graphics approaches for bending, e.g. [Bridson et al.
2003; Grinspun et al. 2003].

We summarize our novel contributions as:

• A hyperelastic constitutive model that separates the large
strain from small strain behaviors in an intuitive way and
thus allows for natural fitting to data.

• A BFGS optimization framework for fitting readily avail-
able ASTM data.

• Exact derivatives of objectives with respect to model pa-
rameters.

• Novel boot strapping heuristics for generating initial guesses
in the optimization framework.

• A fully implicit Kirchhoff-Love thin shell model based on
the OpenSubdiv library, as well as important observations
for solving the associated linear systems.

2 RELATEDWORK
Cloth simulation is a vast topic in both graphics and engineering,
here we discuss just some of the work most related to ours. Recent
work has proposed yarn-level simulations as a way to achieve accu-
rate and very detailed results [Cirio et al. 2014; Kaldor et al. 2008].
These methods can create beautiful details, but require millions if
not billions of degrees of freedom to represent typical garments.
By adopting a continuum mechanics approach we aim to capture
the cloth behavior at a tiny fraction of this cost. A middle-ground
between the two approaches is the mesostructurally-based con-
tinuum model presented in [King et al. 2005]. This can capture
yarn-level effects, but consequently also requires experimental data
that characterizes the fabric at that level.

The estimation of clothing simulation parameters from real fab-
ric deformation data has been investigated in recent years. Lubile
and Magnenat-Thalmann [2008] compared the Kawabata system
(KES) to the FAST system but found that they both have limitations.
More recently [Power 2013] compared results from the FAST sys-
tem to a newer Fabric Testing Kit (FTK) from Browzwear, but still
found limitations. Despite these limitations the work by [Magnenat-
Thalmann et al. 2007] uses the stress-strain curves from KES to
drive an “accurate particle system”. This approach was further elab-
orated upon in [Volino et al. 2009]. Bhat et al [2003] developed an
optimization procedure for estimating clothing simulation parame-
ters directly from video data of moving fabrics. Beyond the already
mentioned methods, existing methods from the textile industry for
testing the mechanical properties of fabric are surveyed in [Wang
et al. 2008].

A number of papers in graphics have proposed alternative and
simple methods for measuring fabric properties. Wang et al. [2011]
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propose a sequence of tensile measurements using small loads (less
than 15 N/m) for which they then fit a piecewise linear model.
Miguel et al. [2012] use a more complicated setup for capturing
data which include more complicated examples with shear buck-
ling. However, they also primarily focus on the low strain domain
(typically less than 200 N/m). By comparison KES tests up to 500
N/m. While the smallest strain regime is most important for typical
cloth simulations, higher strains do occur even in everyday use of
garments and are therefore also important to consider. Examples
of higher strains occur especially near garment seams where parts
of the fabric are physically constrained.

The experimental data of Wang et al. [2011] is based on a sparse
set of measurements, and thus may not be suitable for fitting a
more complex range of strain regimes. The experiments of Miguel
et al. [2012] rely on complex, hand-constructed machinery, which
requires careful manual labor by researchers. Our approach uses a
wide range of experimental data from the readily available ASTM
standard tests, and we examine our experimental error by repeating
experiments with additional samples.

Similar to our approach, Miguel et al. [2016] construct a single
hyperelastic energy function for fabric. Unlike our approach they do
not assume that cloth possesses orthotropic symmetry but instead
allow for a more general anisotropic form, which they then fit
against a subset of the data from [Miguel et al. 2012]. Other papers
in graphics have considered orthotropic hyperelastic energies with
a focus on how tomake it intuitive for an artist to design and control
orthotropic behavior, [Li and Barbič 2014; Xu et al. 2015].We believe
this is complementary to our work as the goal in animation is often
plausibility rather than true reality.

In this work we limit ourselves to elastic deformations, but it is
well-known that cloth exhibits significant amounts of hysteresis due
to internal friction [Miguel et al. 2013; Williams 2010]. Additionally
we do not consider rate-dependent behavior as they do in [Ryou et al.
2007], but we believe that leveraging these ideas is an important
area of future work.

Our use of subdivision finite elements is greatly inspired by
[Cirak and Ortiz 2001; Cirak et al. 2000]. That work is based on the
Loop subdivision scheme, and was also the inspiration for the work
related to cloth simulation by [Thomaszewski et al. 2006]. More
recently the Catmull-Clark subdivision scheme has been considered
for linearly elastic thin shells by [Wawrzinek et al. 2011]. We extend
that work through the use of a fully implicit time integration scheme
and a nonlinear constitutive model. A similar extension based on
B-splines has been presented by [Kiendl et al. 2015].

3 CONSTITUTIVE MODEL
We provide extended details of our Kirchhoff-Love thin shell model
in [Clyde et al. 2017]. With this approach, the cloth constitutive
behavior is defined in terms of the potential energy densityψ . We
assume that the constitutive model is orthotropic to accurately rep-
resent the anisotropy introduced by the warp and weft structure
of woven cloth. Beyond that, the constitutive model must be suffi-
ciently complex to capture the nonlinear stress-strain relationship
exhibited by these materials, yet simple enough to facilitate our
incremental fitting process. We design the model in terms of param-
eters that intuitively relate to specific deformation modes and strain

regimes. Mathematically, we write the energy as ψ = ψ (E,D,k )
where E is the Green-Lagrange strain, D = [d1,d2,d3] are the un-
deformed configuration warp/weft orthotropy (d1,d2) and out of
plane (d3) directions, and k = [a11,a12,a22,G12]T is a short list of
material stiffnesses.

To capture the orthotropic components of the strain, we express
E in the basis Ẽ = DT ED. Notably Ẽ exhibits a simple block structure
due to the Kirchhoff-Love kinematic assumptions which prevent
any stretches and shears in the out-of-plane direction d3. This
means that Ẽ has the form

Ẽ =
*..
,

Ẽ11 Ẽ12 0
Ẽ12 Ẽ22 0
0 0 0

+//
-

(1)

To preserve the required orthotropic symmetry, we need the en-
ergy densityψ to be invariant under replacement of E with QT EQ
for any element Q of the orthotropic symmetry group. One can
check that any such replacement of E will leave Ẽ11 and Ẽ22 un-
changed, and may alter Ẽ12 only by reversing its sign. In other
words, the orthotropy requirement will be satisfied for any energy
of the form

ψ (E,D,k ) = ψ̃ (Ẽ11, Ẽ22, |Ẽ12 |,k ).

In fact, this form retains full generality in the sense that any or-
thotropic function of E can be written this way. This may be shown
by examining the function basis for orthotropic functions speci-
fied in [Zheng 1993] and noting that each basis function can be
expressed in terms of Ẽ11, Ẽ22, and |Ẽ12 |. Of the three invariants,
Ẽ11 directly measures the strain due to warp stretch; likewise Ẽ22
and Ẽ12 measure the weft stretch and in-plane shearing strains,
respectively.

Our model is defined in terms of four scalar functions η1, η2, η3,
η4 to separate energy penalties for the distinct deformation modes

ψ =
a11
2
η1 (Ẽ

2
11) + a12η2 (Ẽ11Ẽ22) +

a22
2
η3 (Ẽ

2
22) +G12η4 (Ẽ

2
12) (2)

The functions ηj are arbitrary except for the constraints ηj (0) = 0
and η′j (0) = 1. The first constraint enforces a zero-energy, zero-
stress rest configuration, while the second constraint allows a natu-
ral correspondence between the parameters ai j and G12 and linear
elasticity at infinitesimal strain. With this convention, the ai j and
G12 should be interpreted as describing the cloth’s small-strain
behavior while the curves ηj describe the nonlinear response to
larger strains. Indeed, we can replicate the orthotropic St. Venant-
Kirchhoff model [Başar et al. 2000] by simply choosing ηj (x ) = x
for all j.

3.1 Parameterization
The scalar functions ηj in Eq. (2) must be sufficiently adjustable to
fit the nonlinear stress-strain behavior of various material types.
Simple spline representations are sufficiently general and easily
adjustable by hand. However, we choose a form which is more
suited to manipulation by an iterative inverse solver to facilitate
subsequent data fitting. Inspired by [Itskov 2001] we use the no-
tion of integer ‘degree’ dj ≥ 1 together with scalar parameters
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Parameters Meaning

ρ Mass density
τ Thickness
a11, a12, a22, G12 Infinitesimal strain parameters
µ1j , α1j , 1 ≤ j ≤ d1 Nonlinear warp stretch response
µ2j , α2j , 1 ≤ j ≤ d2 (Roughly) area preservation
µ3j , α3j , 1 ≤ j ≤ d3 Nonlinear weft stretch response
µ4j , α4j , 1 ≤ j ≤ d4 Nonlinear shear response
Ẽmax
i j , Ẽmin

ii Transition point to extrapolation
Table 1: Complete list of parameters for determining cloth behavior
in our model.

α j1, · · · ,α jdj and µ j1, · · · , µ jdj to define ηj as

ηj (x ) =

dj∑
i=1

µ ji

α ji

(
(x + 1)α ji − 1

)
.

This is akin to the constitutive model by Ogden, [Ogden 1972], but
expressed in terms of the orthotropic integrity basis {Ẽ11, Ẽ22, Ẽ2

12}
instead of the principal stretches. Satisfaction of the constraint
ηj (0) = 0 is automatic, while the constraint η′j (0) = 1 is equivalent

to requiring
∑dj
i=1 µ ji = 1.

3.2 Extrapolation
Our convention for ηj is effective at describing the experimental
strain regime, but can give unpredictable results for strains outside
the fitting dataset. Our data covers strains up to the breaking point
of the cloth, but we still need a plausible extrapolation to regimes
where the real-life cloth would have torn apart. Although such con-
figurations should not be observed in practice, they can temporarily
occur in the iterative solvers used for fitting and simulation.

To address this, for each entry Ẽi j of Ẽ we define correspond-
ing “strain cutoffs”, Ẽmin

i j and Ẽmax
i j , based on the boundaries of

our collected data. If all three of the strain entries satisfy Ẽmin
i j ≤

Ẽi j ≤ Ẽmax
i j , then we proceed with the usual energy evaluation as

described above. If some strain entries lie outside the valid regime,
we instead evaluate our energy via a two term power series approx-
imation expanded around the closest ‘valid’ strain. The choice of
exactly two terms in the power series expansion is the simplest
possible while still preserving the C2 nature of the extrapolated
energy density necessary for fitting and for implicit simulation. To
maintain orthotropic symmetry, we must use Ẽmin

12 = −Ẽ
max
12 . Table

1 provides the full list of parameters.

4 EXPERIMENTAL DESIGN
Our experimental approach is chosen to exercise all important de-
formation modes without sacrificing ease of obtainability. Standard,
commercially-available procedures are strongly preferred over any
test that requires physical construction of a complex apparatus. For
this reason we focus on the ASTM testing standards. In section §7
we present results for canvas, cotton, silk, denim, and wool. The
protocol for denim and wool is different than the remaining materi-
als as noted below. To measure in-plane stretch and shear response,

we use slight modifications of the tensile test ASTM D5035. The
modified test uses cloth strips cut along the warp (90◦), weft (0◦)
and bias (45◦) direction. The strips used are 75 mm long (in the
main direction) and 50 mm wide. For the denim and wool the strips
are 150 mm long. The strips are clamped at both ends and gradu-
ally stretched until the cloth tears apart, with the clamps moving
apart at a rate of 300 mm/min (200 mm/min for denim and wool).
The stretch distance and clamp forces are recorded at least once
per 0.1 second throughout the test for canvas, cotton and silk and
every 2 milliseconds for denim and wool. For future experiments
we recommend the highest possible sampling rate. For comparison
purposes, each direction is tested five times for canvas, cotton and
silk using a new cloth strip each time. We additionally run this test
with cloth strips cut at 22.5◦ and 67.5◦ relative to the warp direction
for model validation. For denim and wool we only run two repeats
of each test and omit the tests for 22.5◦ and 67.5◦. Specifically for
this paper, all of the above experiments were performed using an
Instron 5569 tensile test machine.

Many different methods have been devised for measuring bend
resistance of fabrics. One of the earliest methods based on a simple
cantilever principle dates back to [Peirce 1930]. Yet, this is still
the method being used in the ASTM D1388 method as well as the
FAST system. The basic idea behind the Kawabata system was
first published by [Livesey and Owen 1964], and both approaches
are reviewed by [Ghosh and Zhou 2003]. We refer to the latter for
diagrams illustrating these tests. To measure bending resistance, we
use ASTM D1388. A 25 mm × 200 mm cloth strip is slowly extended
off the edge of a fixed plane and allowed to drape toward a second
plane which is inclined at 41.5◦. The recorded data is the overhang
length of the cloth when it first makes contact with the inclined
plane. This test is repeated for both warp- and weft-oriented cloth
strips. We obtain the mass density of each material based on ASTM
D3776, and we acquire a measured thickness for each material
from ASTM D1777. However, the thickness of a woven fabric is not
easy to rigorously define or measure; thus we treat the measured
thickness as an initial guess as opposed to a guarantee of the correct
value to be used in our model.

We remark that our dataset contains little or no information
about response to negative stretch strains, i.e. in-plane compression.
We do not know of a test procedure for that strain regime because
of cloth’s typical tendency to buckle instead of undergoing any
significant compression. It should also be noted that there is no
standard for measuring the shear properties of fabrics. The in-plane
stretch test along the bias direction is known as the bias extension
test and is well-known [Cooper 1963], but is typically used with
simplifying assumptions that are not valid for large strains, [Dridi
et al. 2011]. However, due to our data fitting process we do not have
to rely on those assumptions.

Lastly, we note that our dataset does not provide data to fit
the term a12η2 (Ẽ11Ẽ22) in our energy definition in Eq. (2). This
term is related to the (pseudo) Poisson ratio for the fabric. The
Poisson effect in fabrics is primarily due to crimp interchange which
is most notable with unbalanced weaves, [Sun et al. 2005]. The
proposed methods in the literature for capturing data for this term
are based on digital image correlation (DIC), [Hursa et al. 2009].
This is commercially available in so called video extensometers, and
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would conceptually be easy to add to our fitting method. However,
we have found this term to have very little effect on the forces
in our other experiments since the fabrics considered here have
very little crimp to begin with. The more noticeable transversal
contractions due to shearing, as seen in the bias extension test, are
modeled accurately with our data.

5 DATA FITTING
In this section we present the methodology for fitting our model
to the experimental data. First we construct a nonlinear objective
function to minimize in §5.1. To facilitate the optimization we fit
the parameters in multiple stages which we describe in §5.2. Due
to the complexity of the objective function it is beneficial to start
with good initial guesses, which we obtain through a bootstrap
method (§5.3); this process also informs our choice of the degree
parameters dj . Finally we discuss the nonlinear solver in §5.5.

5.1 Optimization objective
The experimental observations consist of force-displacement data
points for each of warp, weft, and bias stretch as well as bend
test data for each of the warp and weft directions. Let k denote
the vector of all parameters of the constitutive model. For a given
displacement with correspondingmeasured force f̆ , we can recreate
the same stretch distance using hard constraints to simulate clamps
in our finite element solver and compute the resulting equilibrium.
This gives a simulated force f̂ = f̂ (k ). Similarly, the bend test
data states that some specified cloth overhang length drapes to an
inclination angle of exactly θ̆ = 41.5◦. Again, we can recreate the
test within our finite element solver by allowing a cloth strip of the
same length to drape under gravity and measuring the equilibrium
drape angle θ̂ = θ̂ (k ).

We denote list of measurements to be fit as {p̆i : i ∈ I } where
I is an appropriate set of indices; thus each p̆i is either a tensile
force or a bend angle. We define the quality of a proposed fit via
the following optimization objective function ε :

ε (k ) =
∑
i ∈I

(p̂i (k ) − p̆i )2

p̆2
i

(3)

It is important to prioritize relative error in order to accurately
match the shape of the stress-strain curve through all experimental
regimes. Our datasets cover a wide variety of strain levels, so a
method based on absolute error would over prioritize accuracy in
the highest-strain experiments without accurately fitting the small
strain data.

5.2 Fitting stages
We design our fitting approach around the effects of the various
parameters k . In particular, many of the test data points are almost
unaffected by certain parameters leading to decoupling (or weak
coupling) of some parameters. In particular, the warp stretch results
depend almost exclusively on the parameters τ , a11, µ1j , and α1j
(for all 1 ≤ j ≤ d). Similarly, the weft stretch results depend almost
exclusively on τ , a22, µ3j , and α3j . The bias stretch forces depend on
all parameters relevant for warp or weft stretch, plus the parameters
G12, µ4j and α4j . Finally, the bend tests depend on the thickness τ

together with the parameters relevant for a stretch along that same
material direction.

In light of these dependencies, we design the following fitting
strategy which relies on a series of minimizations of the objective
function in Eq. (3) over subsets of the experimental data. The pro-
cedure is designed such that each optimization step will provide
fits for some additional parameter(s), while having no significant
effect on the simulated test results fitted in the preceding steps.

(1) Select an initial guess parameter set k0. The thickness guess
is the experimentally measured thickness. The extrapolation
cutoffs Ẽmax

i j , Ẽmin
ii are initially turned off completely. The re-

maining parameters’ guesses are chosen as described in §5.3
below.

(2) Minimize the objective summed over warp stretch data points
only, by solving for a11, µ1j , and α1j with all other parameters
held fixed at their values from k0.

(3) Minimize the objective summed over weft stretch data points
only, by solving for a22, µ3j , and α3j with all other parameters
held fixed at their values from k0.

(4) Choose the strain cutoffs Ẽmax
11 and Ẽmax

22 to be 95 % of the largest
strain present in the corresponding tensile tests. (Note that
Ẽmin

11 and Ẽmin
22 should always be 0 for our datasets, since we

have no experimental data measuring response to warp or weft
compression.)

(5) Minimize the objective summed over bias stretch data points
only, by solving forG12, µ4j , andα4j with all the preceding steps’
parameters fixed at their solved-for values and all remaining
parameters fixed at their values from k0.

(6) Choose the strain cutoff Ẽmax
12 to equal 95 % of the largest strain

Ẽ12 present in the bias tensile test.
(7) Finally, minimize the objective summed over the warp and weft

bend data points for the thickness τ . As τ is updated in the itera-
tive process we modify the other small strain parameters using
anewi j = τ 0

τ ai j andGnew
12 = τ 0

τ G12. All tested tensile forces scale
very nearly linearly with both τ and the small-strain parameter
set {a11,a12,a22,G12}; thus the parameter modifications in this
step do not impact the fits of tensile data.
The parameters µi j and αi j are not necessarily restricted to be

positive, and in several cases the solver’s final fit does include
negative parameters.

Our data does not exercise the energy term a12η2 (Ẽ11Ẽ22)) suffi-
ciently to allow fitting. In the linearization at zero strain, a12 deter-
mines the orthotropic Poisson’s ratios via ν12 =

a12
a11

and ν21 =
a12
a22

.
In light of this, we use the St. Venant-Kirchhoff form η2 (x ) = x and
set a12 =

1
2 min{a11,a22} for simplicity.

5.3 Initial guesses
The minimization of Eq. (3) is generally difficult and benefits from
good initial values in k0. Fortunately, we can approximate the opti-
mization problem for the warp and weft parameters by assuming
very simple equilibrium configurations. In particular, we approxi-
mate the equilibrium by assuming that the entire cloth undergoes
constant strain. Based on this assumption and an observed stretch
deformation ∆ℓ, we can compute the total hyperelastic energy of
the cloth strip, Ψ. Then the force component along the stretch
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direction can be computed as ∂Ψ
∂(∆ℓ) . This approximation of the

equilibrium forces gives rise to a simplified version of the optimiza-
tion objective ε , by replacing the simulated equilibrium forces p̂i
with their newly approximated counterparts. We then solve this
simpler problem and use the resulting parameter set as the initial
guess for the original problem in the main solver.

These approximate forces are relatively easy to differentiate
allowing the use of a full Newton optimization solve instead of
the quasi-Newton methods in our main solver. Further, the quicker
function evaluations make it feasible to run thousands of iterations
until convergence. The forces computed using the approximate
equilibrium configuration typically come within 1 % of the forces
obtained using the full quasistatic solve, with the worst error rising
up near 3 %. This means our approximate optimization problem is a
very good model for the full solve, and therefore the initial guesses
k0 we obtain are very close to the final fitted parameters k . This
generally saves a great deal of runtime in the main solver.

Ideally we would use similar approximate equilibria for all exper-
iments in the dataset. However, we are not aware of any appropriate
simplifying assumptions for the bias stretch or bending tests. For
tensile tests in the bias direction, it is well known that an approx-
imate equilibrium can be computed for small strains using the
piecewise-constant strain assumption, [Dridi et al. 2011]. However,
this approximating assumption proved unreliable in our testing,
and in any case cannot be applied at larger strains.

5.4 Choice of degree parameters
In the list of fitting stages provided in §5.2, steps 2, 3, and 5 require
fitting the curves η1, η3, and η4 respectively. An iterative method
is suitable for determining the parameters α jk and µ jk , but the
integer degree parameters dj must be determined by other means.
The choice of dj strongly affects the difficulty of the fitting process.
If dj is too small, ηj may not be sufficiently expressive to model the
materials’ nonlinear behavior under large deformations. If dj is too
large, we introduce near-nullspaces in the fitting process, which
will complicate the optimization problem. In practice, the ideal dj
depends on the specific material being fitted, and thus we choose
dj on a per-solve basis.

To find the simplest possible model that fits the data, each solve
stage is attempted first with a degree 1 curve. The degree is then
incremented until a satisfactory fit is obtained. In warp or weft
fitting, we compute initial guesses for each new curve degree based
on the procedure of §5.3. For bias fits with degree 1 curves, the
optimization is simple enough to be reliably solved regardless of
the initial guess chosen. When running higher degree bias fits, the
previous lower-degree curve is used as an initial guess.

5.5 Optimization method
For the final optimizations steps in §5.2 we explored using both
BFGS and Gauss-Newton methods, together with a line search pro-
tocol which guarantees satisfaction of the strong Wolfe conditions.
Here we discuss the steps needed in computing the functional ε (k )
and its derivatives needed in these approaches.

5.5.1 Equilibrium configuration. Given a mesh configuration q,
the corresponding clamp forces (for tensile tests) or drape angle (for
bend test) can be computed as a simple function of q. However, our

optimization objective function ε = ε (k ) depends on various simu-
lated equilibrium measurements p̂i (k ). In other words, to evaluate
the terms p̂i (k ) appearing in the definition of ε (e.g. at each new
solver step or line search iteration) we must compute the associated
mesh equilibrium configuration.

We use qe = qe (k ) to denote the equilibrium configuration
determined by the parameters k . These are obtained by solving the
force balance in the absence of inertia (see supplementary technical
document [Clyde et al. 2017] for derivation) while satisfying the
linear boundary condition constraints

f (qe ) + BT λ = 0
Bqe = b.

(4)

As outlined in [Clyde et al. 2017], f (q) denotes the combination of
elastic and gravity forces and B expresses the boundary conditions.
For a tensile experiment, these boundary conditions describe the
clamped edges held fixed at the appropriate stretch distance. For a
bend experiment, the constraints keep the cloth draping over the
edge of a fixed plane.

5.5.2 Differentiating the equilibrium configuration. To minimize
ε (k ), both BFGS and Gauss-Newton require differentiation of each
term in the sum in Eq. (3). That is, for a given experimental mea-
surement p̆, we must compute

∂

∂k

(
(p̂ (k ) − p̆)2

p̆2

)
. (5)

Each simulated force f̂ (k ) is a linear function of the corresponding
equilibrium positions qe . Simulated angles θ̂ (k ) additionally require
composition with an inverse trigonometric function. In either case,
the main difficulty of evaluating Eq. (5) lies in computation of ∂qe

∂k
.

The function qe (k ) is defined implicitly via the system in Eq. (4).
Thus to compute its derivative we must differentiate the entire
equilibrium system. Note that the term f (qe ) depends on k both
through qe = qe (k ) and through the usual dependence of elastic
forces on the model parameters k . The differentiated system is:

∂f
∂q
∂qe

∂k
+
∂f
∂k
+ BT

∂λ

∂k
= 0

B
∂qe

∂k
= 0,

Here ∂f
∂q = −K is the negative Hessian of the elastic potential V ,

and ∂f
∂k

can be computed directly. Then the unknowns ∂qe

∂k
and

∂λ
∂k

can be obtained by solving the linear system(
K BT

B 0

)
*
,

∂qe

∂k
− ∂λ
∂k

+
-
=

(
∂f
∂k
0

)
. (6)

We remark that the matrices ∂qe

∂k
and ∂f

∂k
each have |k | columns.

Thus Eq. (6) really represents |k | linear systems, each with the same
system matrix but a different right-hand side. As an alternative to
the method presented here, one could consider the adjoint method
[Giles and Pierce 2000]. However, since the number of constraints
due to boundary conditions is almost always larger than |k | this
would be more expensive.
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5.5.3 BFGS vs. Gauss-Newton. The complexity of the fitting
solves depends heavily on the choice of the degree dj for each
function ηj in the energy definition. For degree 1, either optimiza-
tion method is reliable. However, Gauss-Newton frequently stalls
in fitting curves of degree 2 or larger, repeatedly choosing search
directions that allow virtually no progress. BFGS is robust in solv-
ing degree 2 problems, and handles degree 3 problems well when
using the initial guesses specified in §5.3. We generally find degree
2 or 3 to be the minimum requirement for accurate fitting of our
datasets. Thus the improved performance of BFGS as compared to
Gauss-Newton is quite important.

5.5.4 Multiresolution approach. Cloth simulation based on sub-
division surface finite elements has the advantage of higher-order
convergence under mesh refinement as compared to simpler finite
elements or approximations thereof. We use this feature to speed
up our fitting process. In particular, we run each fitting solve using
a comparatively coarse mesh resolution to describe each simulated
experiment. The resulting parameters are then used as an initial
guess for a higher resolution fitting solve. This process may be
repeated as many times as desired to obtain satisfactory conver-
gence of high-resolution fitting solves more quickly than would
be possible without such a means of generating initial guesses. In
practice, we typically use this technique only for the solves involv-
ing tensile data. For canvas, cotton and silk, we use an 8× 12 grid of
finite elements for our coarsest meshes. Then we progress upward
through resolutions 16 × 24 and finally 32 × 48 to refine the fit. For
denim and wool we use 8 × 24, 16 × 48, and 32 × 96 grids.

6 IMPLEMENTATION
6.1 Quasistatic solver
As discussed in §5.5.1, our fitting process requires solving many
quasistatics problems of the form in Eq. (4) for each BFGS itera-
tion. The nonlinear quasistatic problems are solved using Newton’s
method with line search to minimize the total of hyperelastic and
potential cloth energy subject to the given linear constraints. We
note that the hyperelastic nature of our constitutive model is essen-
tial for this. Unfortunately, the resulting linear systems often exhibit
condition numbers on the order of 1010, which easily can lead to
inaccurate solutions. As a result the Newton step can sometimes
be an ascent direction for the energy or otherwise fail to produce
significant progress, even when the current iterate is visibly not
a local energy minimizer. The solver escapes from such situations
by taking several backward Euler time steps before returning to
the Newton iteration process. This use of backward Euler simula-
tion as a failsafe is triggered anytime three consecutive Newton
steps give a combined energy reduction of 0.1 % or less, or immedi-
ately if Newton chooses an ascent direction for the cloth energy.
A potential alternative is to leverage the method in [Volino and
Magnenat-Thalmann 2007].

6.2 Linear solver
Our fitting solver and simulator both rely heavily on solution of sym-
metric indefinite linear systems. For this we use the PARDISO solver
in Intel’s MKL, [Schenk and Gärtner 2006]. PARDISO operates by
explicit matrix factorization followed by back-substitution. This

Fabric Density Thickness Thread count Weave
[g/m2] [mm] [ends/” × picks/”]

Canvas 294.0 0.53 108 × 56 Basket
Cotton 103.6 0.18 140 × 86 Plain
Silk 83.0 0.18 653 × 123 Satin
Wool 480.6 1.28 32 × 28 Twill
Denim 400.0 0.66 70 × 47 Twill

Table 2: Measured properties of the test materials.

means consecutive solves of the same system are much faster. For
example, our computation of the derivative ∂qe

∂k
in §5.5.2 requires

solution of the same systemmatrix for |k | different right-hand sides,
and thus benefits from a factorization-based linear solver.

6.3 Precision
As mentioned above, cloth quasistatics problems tend to be ex-
tremely ill-conditioned. Thus it is critical to retain as much preci-
sion as possible. We address this in three steps. First, we upgrade
OpenSubdiv from single to double precision arithmetic. Second, we
use iterative refinement in our linear solves, using quad precision
to store the residual. Finally, we are careful to choose a sufficient
number of Gaussian quadrature points. We find 4 × 4 quadrature
points to be sufficient. Despite this, there still exist fairly simple
quasistatics problems on which our solver fails to make progress.
However, our solver is robust enough to handle all problems which
arise during the course of our model fitting procedure.

6.4 Interpretation of data from repeated tests
Each tensile experiment in our datasets is repeated multiple times,
using a freshly cut cloth strip for each iteration. Comparing the
resulting force-displacement data frequently shows relative differ-
ences of up to 20 % for a fixed elongation. The cloth strip lengths
and force measurements in our tensile tests are very precise due to
the nature of the machinery used. We believe the major source of
experimental error is imprecision in lining up the target warp-vs-
stretch-direction angles. Targeting a certain stretch angle can be a
very difficult task, especially for extremely light or stretchy mate-
rials. This task is in general easiest for warp and weft directions;
we generally expect the angle error to be larger for the off-angle
stretches in the 45◦ (bias), 22.5◦, and 67.5◦ directions. For warp or
weft experiments, a strip stretched along the target direction will
produce larger forces than a strip stretched along a direction offset
by a few degrees. Thus, given data from multiple test executions we
choose the curve with largest forces for fitting purposes, assuming
that the corresponding experiment came closest to using the target
stretch direction. There is no simple way to determine which bias
cloth sample was most accurately aligned; thus we randomly select
one sample for fitting.

7 RESULTS
The material model and fitting procedure are demonstrated by
fitting parameters for five materials: canvas, cotton poplin, silk
charmeuse, wool coating, and denim; see Table 2. Our target crite-
rion for a successful fit is for the magnitude of fitting error to be
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Figure 2: Force-elongation curves for 5 cm wide strips of canvas, cotton, silk, denim, and wool. Measured data is shown with dashed lines while
fitted curves are shown in solid. The top set of plots shows the full strain domain while the bottom set shows a closeup for the small-strain regime.
Each plot shows curves for warp (green), weft (blue) and bias (brown). Dots represent data points but are only shown in the small strain plots for
legibility.

smaller than the unavoidable error sources inherent in our frame-
work. The most significant of these is experimental error: the rela-
tive difference between 5 executions of the same tensile experiment
is often 15-20 % for a fixed elongation. Smaller errors are introduced
through the numerical discretization, nonlinear solver residual,
Kirchhoff-Love hypotheses, and interpretation of data from slowly-
moving tensile experiments as representing quasistatic equilibria.

We provide plots comparing experimental vs modeled forces in
Figure 2. Quantitatively, the accuracy of fitted curves is judged by
computing the average relative error over the domain. This is just a
rescaling of L1 error to view the result as a percentage. The fitting
process produces average relative error under 5 % in most cases;
see Table 3. Thus our fits are well within the level of experimental
error in the data.
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Figure 3: Demonstration of the improvement of fit quality as the model complexity increases for silk. For warp and weft, degree 2 is sufficient to
fit the experimental data well (average relative error under 2 %). For bias, the transition from degree 2 to 3 still makes significant progress (average
relative error reduces from 6 % to 4.5 %). In all cases, an orthotropic St. Venant-Kirchhoff model provides a poor fit. Due to our minimization of
relative error, the small strain regime is prioritized even when using models too simple to match the full curve. For the remaining fabrics, the final
curve degrees for warp, weft, and bias respectively were 3, 3, and 2 (cotton); 2, 3 and 3 (canvas); 5, 5, and 4 (denim); and 5, 5, and 3 (wool).
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Figure 4: Relative error plots for tensile tests at 22.5◦, 45◦, and 67.5◦ after adjusting for accidental cloth sample misalignments. The black curve
shows the relative difference between the largest and the smallest unadjusted force measurements. Each of the remaining curves show the relative
error of the model fit compared to the experimental data for one cloth specimen. With very few exceptions the fitting error is well below the
experimental error.

Fabric Warp Weft Bias

Canvas 1.9 % 2.0 % 5.1 %
Cotton poplin 2.9 % 3.2 % 2.6 %
Silk charmeuse 1.9 % 1.7 % 4.5 %
Wool coating 1.1 % 0.8 % 3.4 %
Denim 1.6 % 2.3 % 4.7 %

Table 3:Average relative error of the fitted model vs. the experimental
data.

Figure 3 demonstrates the progression of fit quality as the de-
grees dj are increased and the resulting choice of degrees to fit the
data accurately while minimizing model complexity. The bending
tests match less accurately. Recall that by design of the bending
experiment, all cloth samples should drape downward at an angle
of 41.5◦. However, our fitted models produce a wide range of drape
angles for some materials; see Table 4. A more sophisticated bend
test like the one used in the Kawabata system could be beneficial.
Alternatively, the Kirchhoff-Love assumptions might need modi-
fication to capture the bending response for some types of cloth.
That said, the popular discrete shells bending model as used in

[Miguel et al. 2016] and slightly modified for [Wang et al. 2011] can
also be derived as a discretization of the Kirchhoff-Love kinematic
assumptions.

Fabric Warp drape Weft drape

Canvas 54.6◦ 23.7◦
Cotton poplin 43.5◦ 39.2◦
Silk charmeuse 52.8◦ 26.2◦
Wool coating 42.2◦ 40.7◦
Denim 50.6◦ 30.0◦

Table 4: Bend test drape angles for the fitted models. To match ex-
perimental data, all drape angles should equal 41.5◦.

For validation, the modeled forces are compared against tensile
experiments at stretch directions 22.5◦ and 67.5◦ from weft. Each
validation experiment is executed 5 times. To allow for the diffi-
culty of accurately cutting strips at specific angles, we solve for an
unknown angle deviation ∆θ in each experimental run; thus the
model forces used for comparison assume the strip is aligned at
22.5 + ∆θ or 67.5 + ∆θ degrees. With this adjustment, the relative
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errors between model and experimental forces are generally much
smaller than experimental error. The relative errors from the canvas
validation are shown in Figure 4 as a function of the elongation. The
relative errors for all the fabrics are summarized in Table 5. While
these errors are larger than the fitting errors, they are consistently
below the variation in the experimental data.

Fabric Model Experiment

22.5◦ 67.5◦ 22.5◦ 67.5◦

Canvas 5.8 % 12.8 % 11.0 % 42.0 %
Cotton poplin 7.3 % 11.1 % 22.4 % 30.6 %
Silk charmeuse 9.8 % 5.6 % 36.2 % 22.3 %

Table 5: The average relative error of the model vs. the experimen-
tal data for the validation tests. Each number is the average over 5
experiments.

The qualitative look of the fitted materials is demonstrated in
a series of simulations. The drape test (Figure 1) uses 1m × 1m
squares of each material suspended from two corners held 60cm
apart. This is similar to the setup used by [Wang et al. 2011] but with
a different distance between the corners. The simulated results may
be compared against photographs of the same test run with real
fabric samples. The picture frame and corner pull tests (Figure 5)
show deformations of a 10cm × 10cm cloth square. This latter is
similar to the setup used by [Miguel et al. 2012]. In the picture
frame test, the cloth is held along all edges and the constraints are
moved to induce large shearing deformation. In the corner pull test,
the cloth is stretched diagonally using constraints at the corners.

All data fitting and simulations were run on an Intel Xeon E5-
2698 v4 CPU with 64 GB RAM. Fitting each new material currently
requires approximately 4 hours of compute time, together with
some operator intervention to decide which degrees dj produce the
desired level of fitting accuracy.

8 DISCUSSION
Under the Kirchhoff-Love hypotheses, bending resistance is deter-
mined by the response to small strains (< 3 % in our examples).
The current tensile datasets exhibit large relative error between re-
peated tests in this regime. We believe this causes the discrepancies
in our fitting of bend data; thus the bend fits could be improved
using data from a tensile experiment which provides increased
accuracy in small strain.

Our current optimization objective in Eq. (3) penalizes relative
error in all captured data points with equal weight. However, the
tensile test machinery provides slightly varying sample density
across various regimes of the strain domain. Further, it is unclear
what distribution of sampled strains is desirable. This can be ad-
dressed by some choice of constant weights for each term in Eq. (3),
or by interpolating an experimental curve and then sampling points
according to some chosen target measurement density (e.g., uni-
form).

We do not attempt to model hysteresis from internal friction in
the cloth. However, this is an important factor for the behavior of
real cloth. Previously, this has been investigated by [Miguel et al.

2013] and we hope that our fitting method can be extended to also
estimate the internal friction parameters. Similar to hysteresis, we
have ignored any dependence in the deformation behavior on strain
rate. Additional experimentation might be needed to determine
whether this is reasonable.

When the ultimate goal is to create pleasing and/or accurate
cloth simulations, it should be noted that the interaction between
the fabric and its environment is just as important as the behavior
of the cloth itself. Most obvious in this context is correct contact
handling. However, especially for light weight fabrics (e.g., chiffon)
the coupling between the cloth and the fluid flow of the air around
it is also essential.

The Catmull-Clark subdivision surface-based method used for
fitting the experimental data allows use of the Kirchhoff-Love hy-
potheses, but the resulting non-interpolating finite element basis
means that standard triangle mesh cloth collision algorithms can-
not be used. Extending our work to implement a collision scheme
would enable simulation of more everyday situations involving
cloth at high strains, which would allow greater benefit from our
accurately fit hyperelastic response in that regime. However, we
note that the results obtained from our fitting process can be used
with any discretization; in particular they can be used with triangle
meshes for which existing contact handling algorithms apply.
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