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Dynamic anticrack propagation in snow
J. Gaume 1,2, T. Gast3,4, J. Teran3,4, A. van Herwijnen 2 & C. Jiang4,5

Continuum numerical modeling of dynamic crack propagation has been a great challenge

over the past decade. This is particularly the case for anticracks in porous materials, as

reported in sedimentary rocks, deep earthquakes, landslides, and snow avalanches, as

material inter-penetration further complicates the problem. Here, on the basis of a new

elastoplasticity model for porous cohesive materials and a large strain hybrid

Eulerian–Lagrangian numerical method, we accurately reproduced the onset and propagation

dynamics of anticracks observed in snow fracture experiments. The key ingredient

consists of a modified strain-softening plastic flow rule that captures the complexity of

porous materials under mixed-mode loading accounting for the interplay between cohesion

loss and volumetric collapse. Our unified model represents a significant step forward as

it simulates solid-fluid phase transitions in geomaterials which is of paramount importance

to mitigate and forecast gravitational hazards.
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Cohesive porous materials under compression often evi-
dence volumetric collapse leading to localization of com-
paction or compacting shear bands1,2. This peculiar

fracture process is generally referred to as anticrack and is
reported in the compression of porous sandstone and sedimen-
tary rocks3,4, superheated ice5, submarine landslides6, deep
earthquakes7,8 as well as in brittle foams9. Anticrack propagation
is also believed to be at the origin of dangerous dry snow slab
avalanches10 that are responsible for most avalanche accidents.
Slab avalanches originate due to the mixed-mode failure of a
porous weak snow layer buried below a dense and cohesive snow
slab11. Once the initial failure reaches a critical size, the fracture
propagates along the slope possibly leading to the detachment
and sliding of the overlying slab if the slope-parallel gravitational
force overcomes friction12. While such avalanches were for a long
time believed to initiate due to mode II shear fracture13, recent
experiments reporting fracture propagation on flat terrain as well
as observations of remote avalanche triggering14,15 challenged
classical theories. This contradiction highlighted the crucial role
of the cohesion loss and volumetric collapse of the porous
structure of the weak layer which is generally accompanied by a
so-called “whumpf” sound, indicator of snowpack instability.

Heierli et al.10 proposed a mixed-mode (I/II) anticrack theory
to characterize the conditions for the onset of crack propagation
in snow slab avalanches. More recently, Gaume et al.16,17 pro-
posed the shear-collapse model (SCM) which improved the latter
by accounting for dynamics and a more realistic mechanical
behavior of the porous weak layer using the discrete element
method. However, the static and discrete nature of these two
models prevents upscaling to the scale of typical avalanche slopes
for which a dynamic continuum approach is necessary.

In classical continuum methods for fracture18,19 as well as in
standard materials, the concept of anticrack is physically
impossible due to mesh or material inter-penetration induced
by volume loss. Hence, these methods are suitable for tensile
and shear fractures only. In addition, existing models based on
critical state soil mechanics (CSM) fail in reproducing the post-
peak strain-softening behavior of porous cohesive materials
since only hardening is allowed in compression. To account for
cohesion loss and volume reduction in a finite element snow
model, Mahajan et al.20 artificially removed mesh elements after
failure and allowed for frictional contacts of closing crack faces.
Yet, so far, no standalone continuum constitutive model exists
to simulate dynamic anticrack propagation in porous cohesive
materials.

Here, we propose to address this crucial gap through a new
elastoplastic constitutive model for porous cohesive materials that
accounts for cohesion softening and volume reduction. Simula-
tions are performed using the Material Point Method (MPM)21, a
hybrid Eulerian–Lagrangian method suitable to deal with large
strains. This method is highly relevant for processes involving
fractures and collisions22–24. Our new model accurately repro-
duces the onset and dynamics of propagating anticracks mon-
itored in snow fracture experiments using high-speed
photography and particle tracking. Finally, we show that our
unified model simulates both the release and flow of slab ava-
lanches at the slope scale.

Results
Large-strain elastoplastic model. To model the observed process
of anticrack propagation in snow, we developed a large-strain
elastoplastic model. Material deformation is characterized by
the strain measure. Assuming there is a deformation map ϕ(X, t)
that maps undeformed coordinate X to a deformed coordinate x,
the deformation gradient F is defined as ∂ϕ/∂X. Our physical

model assumes finite strain elastoplasticity, where F is decom-
posed into elastic (FE) and plastic (FP) parts as F= FEFP (mul-
tiplicative elastoplasticity). The elastic deformation gradient is
computed using the isotropic Hooke’s law of elasticity (see
Methods section for more details).

For plasticity, the yield function y(τ) ≤ 0 defines admissible
stress states in an elastoplastic continuum. We model snow based
on the critical state plasticity theory for soil mechanics25,26. For
any stress τ, there exist a mean effective stress (or pressure) p and
a deviatoric stress s. They are given by

p ¼ � 1
d
trðτÞ; ð1Þ

s ¼ τ þ pI; ð2Þ

respectively, where d= 2 or 3 is the problem dimension, I is the
identity matrix and compression corresponds to p > 0. According
to the Von Mises theory27, we can derive the Mises equivalent
stress q, given by q= (3/2 s : s)1/2 (so that q ¼ τ1 � τ2j j for 2D
and q=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ðτ1 � τ2Þ2 þ ðτ2 � τ3Þ2 þ ðτ3 � τ1Þ2
� �q

for 3D, in

principal stress space).
Recent experiments11 and simulations based on X-ray micro-

tomography28–31 highlighted the mixed-mode nature of snow
failure including tensile, shear and compression failure modes.
Given these past studies, it appears that an ellipsoid yield function
is appropriate to reproduce this mixed-mode character. Hence we
chose to start from the modified cam clay (MCC) yield surface32

which has been widely used in the area of soil mechanics.
Note that the analogy between snow and clay was already made
by McClung13 who extended the clay model of Palmer and Rice33

to model shear fractures induced by strain softening. However,
the MCC model is originally cohesionless and does not exhibit
any stress under extension, similar to dry sand. Hence, cohesion
was added to the yield function by shifting the MCC model along
the p-axis. We thus propose a new cohesive cam clay (CCC)
model similar to that of Meschke et al.34 with the following yield
surface:

yðp; qÞ ¼ q2ð1þ 2βÞ þM2 pþ βp0ð Þ p� p0ð Þ; ð3Þ

where p0 represents the consolidation pressure and M is the slope
of the cohesionless critical state line (CSL) that controls the amount
of friction, β represents the ratio between tensile and compressive
strength and controls the amount of cohesion (β ≥ 0). This yield
surface is represented in Fig. 1a. Both MCC and our model are
ellipsoids and are symmetric around the hydrostatic axis.

For the dense snow slab, the hardening and softening is
modeled by expanding and shrinking the yield surface which is
performed by varying p0. We assume the hardening and softening
only depend on the volumetric plastic deformation
ϵPV ¼ log det FPð Þð Þ. We follow the derivation from Ortiz and
Pandolfi35 and use the following hardening law:

p0 ¼ K sinh ξmax �ϵPV ; 0
� �� �

; ð4Þ

where ξ is the hardening factor and K is the material bulk
modulus. When the plastic deformation is compressive _ϵPV<0

� �
,

p0 will increase, causing the yield surface to grow in size. Snow
will consequently receive more elastic responses resisting
compression. When the plastic volume is increased _ϵPV>0

� �
, the

yield surface shrinks which allows the snow to fracture in tension.
This hardening law is represented in Fig. 1b (in black).

Classical hardening/softening laws such as the one described
above for the dense snow slab (Eq. 4) fail in reproducing the
collapse of porous cohesive materials under compression. This is
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shown in Fig. 1c, d (black lines) in which p significantly
increases after reaching the yield surface and q slightly decreases
before increasing. Hence, for the porous weak layer, we propose a
modified softening law that describes cohesion and volume
loss under compressive stresses. This new softening law
involves looking at the volumetric plastic strain rate _ϵPV . We
introduce the anticrack plastic strain η which is related to ϵPV as
follows:

_η ¼ α _ϵPV
�� ��; if t � tc
_ϵPV ; if t>tc

 
ð5Þ

where α is a softening factor which controls the energy dissipated
during fracture and tc is the time corresponding to complete
softening, i.e., ϵPV ¼ 0 and p0= 0 (state (2*) in Fig. 1). Our new
softening law for the weak layer is obtained by replacing ϵPV by η
in Eq. (4) (the discretization is shown in the Methods section).
Hence, when stresses in the weak layer reach the yield surface,
the introduction of the norm of _ϵPV in Eq. (5) will lead to
softening (through a decrease in p0) even under compression for
which _ϵPV<0. The yield surface thus shrinks until it corresponds
to a point at the origin of the p–q space. In addition, cohesion is
removed by setting β= 0 when ϵPV ¼ 0 which ensures continuity.
After reaching this point, the yield surface is free to expand
according to the classical hardening law (Eq. 4), leading to
volume reduction (collapse) due to the weight of the slab (blue
arrows in Fig. 1b) and then a purely frictional/compaction
behavior. Our softening rule reproduces bond breaking in the
weak layer and subsequent grain rearrangement leading to
volumetric collapse due to the compressive weight of the slab36.
In contrast to classical hardening laws, our new formulation
induces a strain-softening behavior even under macroscopic
uniaxial compression, as shown in Fig. 1c, d. The observed

mechanical behavior is very similar to that reported in discrete
element simulations of porous cohesive granular materials37 and
follows the following sequence of mechanical regimes: elastic
regime, failure, drop in pressure and shear stress (strain
softening), plastic consolidation corresponding to the volumetric
collapse and, finally, dense packing regime corresponding to the
jamming transition. This typical post-peak behavior was also
observed in laboratory experiments of snow failure38,39 as well as
during the propagation of compaction bands in confined compres-
sion of snow2. Physically, this behavior is related to the fact that
even under a macroscopic compressive loading mode, the solid
matrix of porous cohesive materials is mostly under tension
(bending) and shear37. The behavior of the weak layer during a
shear test simulation is shown in Supplementary Note 2.

To remove mesh dependency induced by softening, we follow
the suggestion of Mahajan et al.20 and Sulsky and Peterson40 to
regularize the jump in displacement. It is performed by
dissipating the same amount of energy for different mesh
resolutions by setting the softening factor α in Eq. (5)
proportional to the mesh size dx. The influence of the mesh
resolution on the volumetric plastic deformation during weak
layer collapse is shown in Supplementary Note 3. For more detail
about the Material Point Method and the implementation of the
plastic model (plastic flow rule and return mapping), please see
the Methods section.

Let us summarize here the different model parameters and
their physical meaning: p0 is the consolidation pressure and
represents the compressive strength of the material, β is the ratio
between tensile and compressive strength and represents cohe-
sion, M is the slope of the Critical State Line (CSL) and
characterizes the friction of the material, K is the bulk elastic
modulus, ξ is the hardening coefficient and characterizes the
brittleness of the material (a large ξ makes snow more brittle)
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Fig. 1 Overview of the elastoplastic model. a Cohesive (black line) and cohesionless (dashed gray line) cam clay yield surface in the p–q space. The red line
corresponds to the Critical State Line. b Illustration of the hardening models p0 ϵPV

� �
(for the slab) and p0(η) (for the weak layer): the black arrow shows the

classical hardening law used for the snow slab in which p0 increases in compression _ϵPV<0
� �

; the blue arrows represent the new softening model for the
weak layer for which p0 decreases under compression _η ¼ α _ϵPV

�� ��>0� �
until ϵPV ¼ 0 after which the classical hardening law is used with β= 0. c Typical p–ϵV

curve obtained for the unconfined compression of the weak layer in experiment number 2 (see Methods section for model parameters) for the classical
hardening law (in black) and the new softening one (in blue). d Same as c but for the q–ϵV curve. In c and d, p and q in the weak layer (blue curves) do not
perfectly reach zero after softening due to a loss of homogeneity (failure localization)
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and α is the softening factor which controls the fracture energy
of the weak layer.

Field experiments. We report anticrack propagation in Propa-
gation Saw Test (PST) experiments14. A PST consists in
creating an artificial crack of increasing size by cutting within
the weak layer with a saw until crack propagation. Depending
on snowpack properties, the crack can either propagate until
the end of the column (“END” case) or induce a fracture in the
slab thus arresting the propagation (“SF” case). Black markers
are inserted in the snowpack in order to derive the displace-
ments using particle tracking velocimetry (PTV) and a high
speed video camera. Two experiments were performed on flat
terrain (ψ= 0°) and one on a typical avalanche slope (ψ= 37°).
The density of the slab ranged from 159 to 279 kg m−3, slab
thickness ranged from 26 to 75 cm and weak layer thickness
ranged from 1 to 15 cm. For more detail about the experimental
set-up, snowpack properties and data analysis, please refer to
the Methods section.

Figure 2 shows the vertical displacements uy of the markers
during the experiments as well as the displacement field at
different key instants of the experiments. For each experiment,
the crack in the weak layer induces slab bending leading to
relatively small displacements. After reaching the critical crack
length, the vertical displacement increased significantly due to
dynamic anticrack propagation inducing the progressive collapse
of the weak layer.

The first experiment on the flat (experiment number 1)
highlights the potential of remote avalanche triggering from low-
angle terrain. All markers show significant vertical displacements
(between 2.5 and 8 mm) and the fracture in the weak layer
propagated until the end of the beam (END). The second
experiment (experiment number 2) made on a typical avalanche
slope is also a case of full propagation (END) with significant
collapse of the weak layer (up to 1 cm). In this case, crack
propagation is followed by the sliding of the slab since slope
angle is larger than the friction angle of snow (~30°, van
Herwijnen et al.41). Sliding induces the progressive erosion of the
weak layer and thus further vertical displacement. Full propaga-
tion in the weak layer is typical for deep and dense slab layers16.
The third experiment (experiment number 3) on the flat is a case
of partial propagation in the weak layer with slab fracture (SF).
In this case, markers located on the right side of the fracture did
not move. This is a typical outcome for low density and shallow
slab layers15,16,42. Movies of the three experiments, including
displacement fields are provided in the Supplement (Supplemen-
tary Movies 1–3).

PST simulations. The hybrid Eulerian–Lagrangian Material
Point Method was used to solve the set of partial differential
equations of the system, given the same characteristics and
boundary conditions as in the experimental PSTs. We discuss in
detail the choice of snowpack mechanical properties in the
Methods section.

As shown in Fig. 2 and in the Supplementary Movies, our
model accurately reproduces all the features observed in the
experiments. More specifically, anticrack propagation on flat
terrain i.e. without external driving shear forces, is very well
captured (Fig. 2a and Supplementary Movie 1). A measured
critical crack length ac= 39 cm was well reproduced by the
simulation. The collapse wave speed c was computed from the
time-delay between the onset of movement between markers15.
It was around 35 m s−1 in both the experiment and the
simulation. This speed is significantly lower than the speed of
elastic waves ce ¼ ffiffiffiffiffiffiffiffi

E=ρ
p

in the slab which is around 200 m s−1.

Once the crack has propagated through the full system length,
the system is at rest. Figure 2b and Supplementary Movie 2
show the results on a typical avalanche slope of 37°. Anticrack
propagation features are very similar as on the flat but the
propagation speed is lower (c= 23 m s−1) due to a lower slab
elastic modulus and density and a larger weak layer strength16

than in experiment number 1. The bending phase, critical
crack length (ac= 32 cm), anticrack propagation as well as the
frictional sliding of the slab are very well reproduced by our
model. Crack branching resulting from the interplay between
weak layer and slab fracture is also well reproduced, as shown
on Fig. 2c and Supplementary Movie 3. In this case, anticrack
propagation in the weak layer was arrested 10 cm after reaching
a critical length (ac= 26.5 cm) as the tensile stress in the slab
induced by slab deformation exceeded the tensile strength due
to its thin and weak character (low density slab). In contrast, in
the two previous experiments, the tensile stress in the slab
remained lower than the strength thus leading to full propagation.
Nevertheless, we note that the bending deformation pre-
propagation was underestimated by our model for experiment
number 3. This suggests that inelastic (probably rate-dependent)
deformation is induced by the very loose character of the slab
in this experiment (ρ3= 159 kg m−3). In addition, we observe
small oscillations in our displacements because our simulations
are performed without damping.

Note that for all simulations, the anticrack velocity was
found almost equal to the collapse speed obtained from the
vertical displacement of the slab. However, we observed that
the anticrack tip is always located slightly ahead of the collapse
wave front.

Slope-scale simulations. Two- and three-dimensional slope-scale
simulations of remote avalanche triggering were performed
(Supplementary Movies 4–7). In both 2D and 3D slope simula-
tions, the average crack propagation speed was around 60 m s−1

and the crown fracture was almost perpendicular to the bed
surface as reported by Perla43 and McClung and Schweizer44.
Furthermore, the slab fracture at the crown of the avalanche
(upslope section of the fracture line) started branching from
the bottom of the slab at the interface with the weak layer
(Supplementary Movie 5), in contrast to the PST simulation and
experiment number 3 in which it started branching from the
top. In 3D, the simulated release zone (Fig. 3, Supplementary
Movie 7) has commonly observed characteristics43: an arc
crown line as well as jagged flanks (side sections of the fracture
line) and staunchwall (bottom section of the fracture line). Crown
fracture occurs in tension while flank and staunchwall fractures
occur in shear. Finally, the cross-slope propagation was
approximately twice slower than up-slope propagation.

Discussion
Our new model overcomes one of the major shortcomings of
Critical State Soil Mechanics, namely that it performs very poorly
with materials that exhibit significant strain-softening and void ratio
changes with strain45. It reproduced the observed failure behavior of
weak snow layers, one of the most porous geomaterials (volume
fraction <20%). Yet, our model can be applied to different porous
media exhibiting similar behaviors, i.e., strain softening and volume
reduction under compressive stresses. For instance, it has great
perspectives of applications in different fields reporting anticrack
fracture modes, such as in the compression of porous sandstone
and sedimentary rocks, landslides as well as deep earthquakes.

Our model reproduced dynamic propagation of anticracks in
porous layers of snow as well as crack branching in the case of
loose and soft overlying snow slabs. More generally, our unified

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05181-w

4 NATURE COMMUNICATIONS |  (2018) 9:3047 | DOI: 10.1038/s41467-018-05181-w | www.nature.com/naturecommunications

www.nature.com/naturecommunications


model is relevant to simulate solid-fluid phase transitions in
geomaterials. Indeed, we can simulate not only the initiation but
also the flow of gravitational mass movements using a single and
adequate framework as shown in the Supplementary Movie 4.
This simulation corresponds to one of the most complex phe-
nomenon in snow science, namely the remote triggering of a slab
avalanche by a skier (simulated as a snowman)46. The skier

initiates a crack in the weak layer that propagates along the slope
as a mixed-mode anticrack. The progressive loss of support of
the slab leads to the release and flow of the avalanche which
eventually buries the skier. Note that close to the skier, we observe
local slab fractures similar to the “shooting cracks” which are
reported when the avalanche danger level is considerable
or higher47. This slope simulation reproduced so-called
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“en-echelon” fractures during anticrack propagation which are
often observed in the field48.

Finally, there is a debate about crack branching in the slab on
whether it should start from the bottom or from the top due to
slab bending. We systematically observed slab fractures opening
from the top in PST simulations and field experiments. However,
for slope simulations (Supplementary Movies 4–7) the crown
fracture always started branching at the bottom of the slab at the
interface with the weak layer in agreement with near-infrared
crown fracture measurements at the origin of this debate49,50.
Hence, our model reconciles contradictory observations of slab
fractures from small scale field tests (top to bottom) and from real
avalanches (bottom to top). We suggest that the main reason for
this discrepancy is related to the slope angle gradient at the crown
and the frictional sliding of the slab. In the Supplementary
Movie 5 (crown fracture in a 2D slope simulation), it appears that
the crown fracture is a secondary process occurring after the
crack in the weak layer has passed. Hence, the tensile stress
induced by slab bending was not sufficient to induce a tensile
fracture, very likely due to the large propagation speed which
reduces bending as suggested by Gaume et al.16. However, after
crack propagation and collapse, the weak layer has a frictional
shear behavior leading to a pure tension stress state (no bending)
in the slab51 that has started to slide on the weak layer only where
the slope is steep enough. This induces very large tensile stresses
in the slab which are maximum at the interface with the weak
layer where the fracture initiates. In contrast, in PST experiments
and simulations (Fig. 2c), the bending of the slab induced by the
crack in the weak layer created with the saw is sufficient to lead
to slab fracture and the arrest of crack propagation in the weak
layer. In that case, stresses are larger at the top of the slab where
the fracture initiates16.

In the future, the parameters of our model should be system-
atically derived from in situ measurements and related to snow
type and density. The main difficulty lies in the thin and fragile
nature of weak layers which prevents efficient mechanical testing
such as triaxial tests to evaluate relevant model parameters.
Hence, a calibration based on PST results using a larger dataset
similar to what was done in van Herwijnen et al.52 or an eva-
luation based on X-ray computed tomography28 will be required.
This would allow to develop a predictive model to mitigate and
forecast real-scale gravitational hazards by using digital elevation
models of real slopes obtained from laser scanning or photo-
grammetry53 as input.

Methods
Experimental set-up. Data were collected in Winter 2015–2016 in Davos,
Switzerland. At each site, we collected a manual snow profile and conducted the PST
according to the procedure outlined in Greene et al.54 (Fig. 4). The PST was filmed
using a high speed camera on a tripod in order to evaluate the motion of

black plastic markers inserted into the pit wall using particle tracking
velocimetry (PTV)15. This allowed us to compute the displacement of the snow
slab above the weak layer with a mean accuracy of 0.1 mm. The crack propagation
speed c was then evaluated by computing the ratio between the horizontal distance
and the time delay between the onset of vertical movement of subsequent markers
as described in van Herwijnen and Jamieson36. Data for each test are presented
in Table 1.

Model parameters. The parameters measured in the experiments were directly
used as input of the model (geometry and density). For the slab, the Young’s
modulus E and tensile strength βp0 were derived from density based on laboratory
experiments55,56. The initial consolidation pressure pini0 was chosen 20 times larger
than the tensile strength57 leading to β= 0.05. Note that in the PST, the slab fails
only under tension and thus the absolute value of p0 has no effect on the results,
only βp0 does. The hardening factor ξ of the slab was chosen based on laboratory
experiments of triaxial tests of snow34,58,59 but could also be derived from
strength–density relationships57,60.

�

L
b

Weak layer

Substratum

Slab

Snow saw

Critical crack length ac

D

Fig. 4 Illustration of the experimental set-up of the Propagation Saw
Test (PST). After reaching the critical crack length (red star), the crack
propagates along the weak layer. Black markers are inserted in the slab
and the substratum to track their positions using Particle Tracking
Velocimetry (PTV)

Table 1 Parameters obtained in the experiments

Parameter Exp_01 Exp_02 Exp_03

Slope angle ψ (°) 0 37 0
Mean slab density ρ (kg m−3) 279 255 159
Slab thickness D (cm) 70 75 26
Weak layer thickness Dwl (cm) 7.5 15 1
PST outcome END END SF
Critical crack length ac (cm) 39 32 26.5
Position of slab fracture xSF (cm) — — 36
Frames per second 120 120 120

END: full propagation in the weak layer, SF: partial propagation with slab fracture

FlankFlank

Crowna b

Staunchwall

Fig. 3 3D slope-scale simulation of remote avalanche triggering (Supplementary Movie 7). a Release zone showing an arc crown line as well as jagged
flanks and staunchwall. b Flow of the avalanche
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For the weak layer, its thin and fragile character prevents mechanical testing to
measure relevant mechanical properties. Hence, the shape of our Cohesive Cam
Clay yield surface was based on laboratory experiments of weak snow failure11 and
simulations based on X-ray microtomography31. The initial consolidation pressure
p0 and the softening factor α (which controls the fracture energy) were obtained by
matching the critical crack length and propagation speed in the experiments and
the simulations. The hardening factor ξ determines the amount of volumetric
collapse and was thus evaluated from PST experiments. The tension/compression
ratio β was chosen equal to 0.211. The density of the weak layer was chosen equal to
100 kg m−3 (lower range of measurements reported in Jamieson and Johnston61).

For both the slab and the weak layer, the friction coefficientM was chosen equal to
0.511,41 and the Poisson’s ratio equal to 0.357. Model parameters are given in Table 2.

Numerical model. Material deformation is characterized by the strain measure.
Assuming there is a deformation map ϕ(X, t) that maps undeformed coordinate X
to a deformed coordinate x, the deformation gradient F is defined as ∂ϕ/∂X. Our
physical model assumes finite strain elastoplasticity, where F is decomposed into
elastic and plastic parts as F= FEFP. The Hencky strain ϵ also provides a convenient

description of elastic deformation. It is related to FE as ϵ ¼ 1
2 log FE FEð ÞT

� �
. We can

write the singular value decomposition of FE as FE=UEΣEVE following the con-
vention from Irving et al.62. It can be shown that UE diagonalizes ϵ63. Consequently
in the principal space, we have

ϵ̂i ¼ logΣE
ii ð6Þ

where ϵ̂i are the eigenvalues of ϵ.
For the constitutive relation, we adopt the St. Venant–Kirchhoff energy density

as in Klar et al.63:

Ψ FE
� � ¼ μ trðϵ2Þ þ 1

2
λtrðϵÞ2; ð7Þ

where μ and λ are Lamé parameters. In terms of the Hencky strain, it implies the
following stress strain relationship:

τ ¼ C : ϵ; ð8Þ

where C is the fourth-order elastic modulus tensor and τ is the Kirchhoff stress
tensor. If we denote the principal stress as τ̂ and represent τ̂ and ϵ̂ with vectors, C
reduces to a matrix C and we may write

τ̂ ¼ C ϵ̂: ð9Þ

C is given by C= 2μI+ λ11T, where I is the identity matrix, 1 is the all ones vector.
We may further define D=C−1 so that ϵ̂ ¼ Dτ̂.

An elastoplastic model is not complete without a flow rule. Our model follows
the same principle as the MCC model and obeys an associated flow rule. Recall the
multiplicative decomposition F= FEFP, we have the elastic right Cauchy–Green
strain tensor CE and the elastic left Cauchy–Green strain tensor bE as CE= (FE)TFE

and bE= FE(FE)T64. Furthermore, CP= (FP)TFP denotes the plastic right
Cauchy–Green strain tensor. The associative plastic flow rule is given by Simo65

and Simo and Meschke66

� 1
2
Lvb

E ¼ _γ
∂y
∂τ

bE; ð10Þ

_γ � 0; y � 0; _γy ¼ 0; ð11Þ

where Lvb
E ¼ F ∂

∂t CP
� ��1

FT is the Lie derivative of bE, _γ is the plastic
consistency parameter and Eq. (11) are the Kuhn–Tucker conditions. The
associativity corresponds to the direction choice of ∂y

∂τ. This choice is also known as
the principle of maximum plastic dissipation64, leading to a plastic flow that

maximizes the plastic dissipation rate. We refer to the derivation by Klár et al.63 for
more detailed discussion of the associative flow rule and non-associative flow rule.
Note that combined with the flow rule, our plastic model perfectly satisfies the
second law of thermodynamics, thus energy will never increase during the
simulation.

The return mapping is the discrete equivalent of solving for the strain that lies
inside the yield surface and satisfies the flow rule. Following the derivations from
Simo and Meschke66 and Klar et al.63, we can show (see Supplementary Note 1)
that if a trial elastic strain ϵ̂tr ¼ logΣE is computed assuming there is no plasticity,
the return mapping corresponds to solving for ϵ̂nþ1 that satisfies

ϵ̂tr � ϵ̂nþ1 ¼ Δγ
∂y
∂τ̂

ð12Þ

subject to y τ̂ ϵ̂nþ1� �� � � 0, where τ̂ is related to ϵ̂nþ1 through the elastic modulus
tensor (see Eq. (9)). We note that return mapping for associative plasticity is
equivalent to solving the following optimization problem:

τ̂ ¼ arg min
τ̂

τ̂ � τ̂tr
�� ��2

C�1

s:t:yðτ̂Þ ¼ 0; ð13Þ

where τ̂ ¼ Cϵ̂nþ1 and τ̂tr ¼ Cϵ̂tr are the projected stress and trial stress in the
principal space respectively, and τ̂k k2C�1¼ 1

2 τ̂
TC�1τ̂. It can be verified that the

optimality condition of the Lagrangian reveals Eq. (12).
We now consider the 2D case. If the trial stress lies inside the yield surface,

snow deforms elastically and we set ϵ̂nþ1 ¼ ϵ̂tr. Otherwise, we need to project the
stress onto the yield surface by solving the nonlinear equations of ϵ̂nþ1. Note that
we have three unknowns ϵ̂nþ1

1 ; ϵ̂nþ1
2 and Δγ and three equations

f ¼ ϵ̂nþ1 þ Δγ
∂y
∂τ̂

ϵ̂nþ1� �� ϵ̂tr ¼ 0; ð14Þ

y ¼ y τ̂ ϵ̂nþ1
� �� � ¼ 0: ð15Þ

We can efficiently solve this system through a classical Newton’s method. We have
found that the iterative process usually converges within 2–3 iterations.

In 3D we could follow the same procedure with 2D. However that
results in a nonlinear system with four unknowns. Inverting a 4 × 4 Hessian is
much more expensive than inverting a 3 × 3 one. We develop a novel procedure
that reduces the number of unknowns to 3. Since y can be written in terms
of p and q, the goal is to parametrize τ̂ in the same subspace. First, we rewrite
Eq. (14) as

Dτ̂ þ Δγ
∂y
∂τ̂

ϵ̂nþ1� �� ϵ̂tr ¼ 0: ð16Þ

Let’s use αi to denote some unknown coefficients. From Eq. (2), we know
τ̂ = α1S+ α21. Furthermore, it can be shown that both S and 1 are eigen-
vectors of D, therefore Dτ̂ = α3S+ α41. Differentiating the yield function
reveals that ∂y∂τ̂ = α5S+ α61. As a result, we have ϵ̂

tr = α7S+ α81. Plugging in Eq. (2)

gives τ̂ = α9ϵ̂
tr + α101. We can further define the deviatoric trial strain ϵ̂dev ¼

ϵ̂tr � 1
3 trðϵ̂trÞ1 to get τ̂ ¼ α11

ϵ̂dev

ϵ̂k kdev þ α121. Thus τ̂ must lie in the plane spanned by

ϵ̂dev and 1. We can solve for α11 and α12 using the definition of p and q. The result
is given by

τ̂ ¼ �p1þ q

ffiffiffi
2
3

r
ϵ̂dev

ϵ̂devk k : ð17Þ

When we substitute this result into the optimization problem 13 and treat p and q

Table 2 Model parameters

Slab Weak layer

Parameter Exp_01 Exp_02 Exp_03 Exp_01 Exp_02 Exp_03

Density ρ (kg m−3) 279 255 159 100 100 100
Young’s modulus E (MPa) 12 8.5 2 1 1 1
Poisson’s ratio ν 0.3 0.3 0.3 0.3 0.3 0.3
Thickness D (cm) 70 75 26 7.5 15 1
Initial consolidation pressure pini0 (kPa) 93 75 24 11 22 4
Tension/compression ratio β 0.05 0.05 0.05 0.2 0.2 0.2
Friction coefficient M 0.5 0.5 0.5 0.5 0.5 0.5
Hardening factor ξ 30 30 30 0.25 0.07 0.05
Softening factor α — — — 15 250 5
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as unknowns, the optimal condition becomes a nonlinear system in terms of p, q,
and Δγ which can be solved efficiently with a 3 × 3 Newton’s method. Once p and q
are solved, we compute τ̂ using Eq. (17) and ϵ̂nþ1 =Dτ̂.

In the following, we show how we track the volumetric plastic strain. The
return mapping essentially extract extra deformation from the trial state and push
it into the plastic strain. Since our hardening law depends only on ϵPV = log(JP)= log
(det(FP)), we only need to store this single variable instead of the full FP. It is
updated as

ϵPV
	 
nþ1¼ ϵPV

	 
nþ tr ϵ̂trð Þ � tr ϵ̂nþ1
� �� � ð18Þ

at the end of the return mapping algorithm. For the modified softening law of the
porous weak snow layer, it is updated as

½η�nþ1 ¼ ½η�n þ α tr ϵ̂trð Þ � tr ϵ̂nþ1
� ��� �� ð19Þ

where α is the softening factor.

Material point method. The material deformation changes according to con-
servation of mass, momentum, and the elastoplastic constitutive model:

Dρ
Dt

¼ 0; ρ
Dv
Dt

¼ ∇ � σ þ ρg; σ ¼ 1
J
∂Ψ

∂F
FE ; ð20Þ

where J= det(F) and σ = τ/J is the Cauchy stress tensor. MPM21 consists in
using particles (material points) to track mass, momentum, and deformation
gradient. The Lagrangian character of these quantities facilitates the
discretization of the mass conservation equation as well as the acceleration
term in the momentum conservation equation. However, the lack of mesh
connectivity between particles complicates the calculation of spatial derivatives
of the stress tensor (∇ · σ). Hence, this is done by using a regular background
Eulerian grid mesh and interpolation functions over this grid in the standard
FEM manner using the weak form. Hence, in MPM, there is no inherent
need for Lagrangian mesh connectivity and, in a large deformation framework,
MPM implicitly handle fractures and collisions. This is essential to simulate
the dynamics of materials which evidence many topological changes such
as snow.

We closely follow the explicit MPM algorithm from Stomakhin et al.24

with a symplectic Euler time integrator. The primary difference is the
elastoplastic constitutive model regarding how stress is computed and
processed under the plastic flow. We describe here the update procedure in
which each step is illustrated in Fig. 5. The first step consists in transferring
mass and velocities from particles to the grid using a generalization of the
Fluid-Implicit-Particle (FLIP) method67 for solid mechanics. The mass is
transferred using the weighting functions mn

i ¼Pp mpw
n
ip with i= (i, j, k) is

the grid cell index. Velocity is also transferred to the grid, but weighting with
wn
ip does not result in momentum conservation. Instead, we use normalized

weights for velocity vni ¼Pp v
n
pmpw

n
ip=m

n
i . Then, we compute grid forces and

update grid velocities (steps 2 and 3). A trial elastic deformation gradient is
computed (step 4) and the yield condition is checked (step 5). If y(τ) > 0, we
perform return mapping algorithm (step 6) to update deformation
gradient (step 7). If y(τ) ≤ 0 we keep the trial deformation gradient. Finally,

we compute particle velocities (step 8) and update particle positions (step 9).
We refer to Jiang et al.68 for all other steps in the MPM time stepping
algorithm.

Data availability. Data supporting the plots of the manuscript and other
results of this study are available from the corresponding author upon request.
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