
Journal of Computational Physics 365 (2018) 7–17
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Parallel redistancing using the Hopf–Lax formula

Michael Royston a, Andre Pradhana a, Byungjoon Lee b, Yat Tin Chow a,
Wotao Yin a, Joseph Teran a,∗, Stanley Osher a

a University of California, Los Angeles, United States
b Catholic University of Korea, Republic of Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 April 2017
Received in revised form 3 October 2017
Accepted 21 January 2018
Available online 15 February 2018

Keywords:
Level set methods
Eikonal equation
Hamilton Jacobi
Hopf–Lax

We present a parallel method for solving the eikonal equation associated with level set
redistancing. Fast marching [1,2] and fast sweeping [3] are the most popular redistancing
methods due to their efficiency and relative simplicity. However, these methods require
propagation of information from the zero-isocontour outwards, and this data dependence
complicates efficient implementation on today’s multiprocessor hardware. Recently an
interesting alternative view has been developed that utilizes the Hopf–Lax formulation
of the solution to the eikonal equation [4,5]. In this approach, the signed distance at an
arbitrary point is obtained without the need of distance information from neighboring
points. We extend the work of Lee et al. [4] to redistance functions defined via
interpolation over a regular grid. The grid-based definition is essential for practical
application in level set methods. We demonstrate the effectiveness of our approach with
GPU parallelism on a number of representative examples.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The level set method [6] is a powerful technique used in a large variety of problems in computational fluid dynamics,
minimal surfaces and image processing [7]. In general these methods are concerned with the transport evolution ∂φ

∂t +v ·∇φ

of a level set function φ : Rn → R in velocity field v. While the essential property of φ is typically the location of its
zero iso-contour (� = {

x ∈R
n|φ(x) = 0

}
), in practice many applications additionally require that it be a signed distance

function (|∇φ| = 1). This property will not generally be preserved by the transport evolution, but it can be recovered without
modifying the location of the zero isocontour. This process is commonly referred to as redistancing or reinitialization [8–10].

We describe the redistancing problem in terms of the signed distance function φ that is obtained from an arbitrary
non-signed-distance level set function φ0 (while preserving the zero isocontour of φ0). Mathematically, the process obeys
the eikonal equation as

|∇φ(x)| = 1 (1)

sgn(φ(x)) = sgn(φ0(x)).

There is extensive previous work related to the solution of (1). The most commonly used methods are the fast marching
method (FMM) [1,2] and the fast sweeping method (FSM) [3]. First proposed by Tsitsiklis [1] using optimal control, the

* Corresponding author.
E-mail address: blee @catholic .ac .kr (B. Lee).
https://doi.org/10.1016/j.jcp.2018.01.035
0021-9991/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2018.01.035
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:blee@catholic.ac.kr
https://doi.org/10.1016/j.jcp.2018.01.035
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2018.01.035&domain=pdf

8 M. Royston et al. / Journal of Computational Physics 365 (2018) 7–17
fast marching method was independently developed by Sethian in [2] based on upwind difference schemes. It is similar
to Dijkstra’s method [11] for finding the shortest path between nodes in a graph. The fast marching method uses upwind
difference stencils to create a discrete data propagation consistent with the characteristics of the eikonal equation. Sorting
is used to determine a non-iterative update order that minimizes the number of times that a point is utilized to create a
strictly increasing (or decreasing) propagation. The operation count is O(Nlog(N)) where N is the number of grid points
and the log(N) term is a consequence of the sorting. Fast sweeping is similar, but it uses a simpler propagation. Rather
than using the optimal update ordering that requires a heap sort, a Gauss–Seidel iterative approach is used with alternating
sweep directions. Typically, grid axis dimensions are used as the sweep directions. For Rn it only requires 2n propagation
sweeps of updating to properly evaluate every point.

Notably, both the FMM and FSM approaches create data flow dependencies since information is propagated from the
zero isocontour outwards and this complicates parallel implementation. Despite this, various approaches have achieved
excellent performance with parallelization. The Gauss–Seidel nature of FSM makes it more amenable to parallelization than
FMM. Zhao initially demonstrated this in [12] where each sweep direction was assigned to an individual thread with the
final updated nodal value being the minimum nodal value from each of the threads. This method only allowed for a low
number of threads and further scaling was achieved by splitting the individual sweeps into subdomain sweeps with a
domain decomposition approach. However, this strategy can require more sweep iterations than the original serial FSM
and the required iterations increase with the number of domains which reduces parallel efficiency. Detrixhe et al. [13]
developed a parallel FSM that scales in an arbitrary number of threads without requiring more iterations than in the serial
case. Rather than performing grid-axis-aligned Gauss–Seidel sweeps, they use Cuthill–McKee ordering (grid-diagonal) to
decouple the data dependency. Since the upwind difference stencil only uses grid axis neighbors, nodes along a diagonal
do not participate in the same equation and can thus be updated in parallel trivially. They extended these ideas to hybrid
distributed/shared memory platforms in [14]. They use a domain decomposition strategy similar to Zhao [12] to divide the
grid among available compute nodes and a fine grained shared memory method within each subdomain that utilizes their
approach in [13] to achieve orders of magnitude performance increases.

FMM is more difficult to implement in parallel, however even Tsitsiklis [1] developed a parallel FMM algorithm using
a bucket data structure. A number of approaches use domain decomposition ideas similar to Zhao [12] and Detrixhe et
al. [14] to develop parallel FMM [15–18]. In these approaches the grid is typically divided into disjoint sub grids with a
layer of ghost nodes continuing into adjacent neighbors. Each sub grid is updated in parallel with the FMM update list
typically leading to rather elaborate communication between threads. Jeong et al. [17] developed the fast iterative method
(FIM), which is a parallel approach using domain decomposition but with a looser causal relationship in the node update
list to localize updates for Single Instruction Multiple Data (SIMD) level parallelism. Simplifications to the update list in
FMM improve parallel scaling, but tend to increase the number of worst case iterations. Dang et al. [19] extended FIM to
a coarse/fine-grained approach based on domain decomposition with load balancing via master/worker model that allowed
for efficient performance on heterogeneous platforms.

Recently an interesting alternative to FMM and FSM has been proposed. Darbon and Osher [5] and Lee et al. [4] utilize the
Hopf–Lax formulation of the solution to the Hamilton–Jacobi form of the eikonal equation. Notably, the signed distance at an
arbitrary point is obtained without the need of distance information from neighboring points. This allows for the solution
at any given point in any order and prevents the need for communication across cores which greatly simplifies parallel
implementation. Furthermore, this inherently allows for updates done only in a narrow band near the zero-isocontour. FSM
must solve over the entire domain, and while FMM can be done in a narrow band, FMM methods are generally more difficult
to implement in parallel. These aspects make the Hopf–Lax approaches in [4,5] very compelling for parallel architectures.
In this paper, we extend the work of Lee et al. to handle functions defined via interpolation over a regular grid. Lee et al.
demonstrated compelling results with abstractly defined functions. However, treatment of grid-based functions is essential
for practical application in level set methods. We demonstrate the effectiveness of our approach with Graphics Processing
Unit (GPU) parallel implementation.

2. Method

Following Lee et al. [4] we use the Hamilton–Jacobi formulation of the eikonal equation (1)

∂

∂t
φ̃(x, t) + ‖∇φ̃(x, t)‖2 = 0

φ̃(x,0) = φ0(x)

(2)

for x ∈R
n, t > 0. We assume that φ0 is constructed such that⎧⎪⎨

⎪⎩
φ0(x) < 0 x ∈ �\∂�

φ0(x) > 0 x ∈ (Rn\�)

φ0(x) = 0 x ∈ ∂�

for some set � ⊂ R
n . As in Lee et al. [4] we assume that the set � is closed and non empty. Isocontours of the time

dependent solution φ̃ progress from the boundary ∂� in its normal direction at a rate of 1. To know the distance to the

M. Royston et al. / Journal of Computational Physics 365 (2018) 7–17 9
Algorithm 1 Modified secant method.

while |φ̃(xi, tk+1)| > ε do

�t = −φ̃(xi, tk) tk−tk−1

φ̃(xi,tk)−φ̃(xi,tk−1)

if |�t| > tol then
if φ̃(xi, tk) > 0 then

�t = �tmax

else
�t = −�tmax

end if
end if
tk+1 = tk + �t

end while

boundary, we simply need to know at which time t̂ the zero-isocontour of φ̃ has progressed to the point x. In other words,
the signed distance (φ(x)) from the point x to the boundary ∂� is given by the time t̂ with φ̃(x, ̂t) = 0: φ(x) = t̂ . Note that
we only consider the case here of positive φ since the case of negative φ is trivially analogous.

As in Lee et al. [4], we treat the problem as root finding and use the secant method. However, unlike Lee et al. we are
specifically interested in redistancing grid based functions. Thus we assume that the initial function is defined in terms of
its interpolated values from grid nodes as φ0(x) = ∑

i φ
0
i Ni(x) where the function Ni is the bilinear interpolation kernel

associated with grid node xi and φ0
i = φ0(xi). Also, when we solve for the redistanced values, we do so only at grid nodes

(i.e. we solve for φi = φ(xi) = t̂). Thus the secant method only requires the evaluation of the function φ̃(xi, tk) for iterative
approximation tk → t̂ . We next discuss the practical implementation of the secant method and evaluation of φ̃(xi, tk) for
grid based data.

2.1. Secant method for roots of φ̃(xi, ̂t) = 0

In order to use the secant method to solve for the root in this context we use the iterative update

tk+1 = tk − φ̃(xi, tk)
tk − tk−1

φ̃(xi, tk) − φ̃(xi, tk−1)
. (3)

The initial guess t0 can either be set from neighboring nodes that have been recently updated, or generally from a priori
estimates of the distance (see Section 2.3). However, when no such information is possible or when it would negatively
effect parallel performance we use t0 = 0. We set t1 = t0 + ε where ε is proportionate to the grid cell size.

The main concern with using the secant method in this context is that while φ̃(xi, t) is monotonically decreasing in t , it
is not strictly monotone. This means that there can be times t where d

dt φ̃(xi, t) = 0. For example, if the minimum of φ0(xi)

over the ball centered at xi of radius t is in the interior of the ball (at a point of distance s from xi), then d
dt φ̃(xi, r) = 0

for s ≤ r ≤ t (see Section 2.2). The secant method is not well defined if we have iterates with equal function values. To
compensate for this, if secant would divide by zero, and we have not already converged, we simply increase or decrease
tk+1 = tk ± �tmax in the correct direction. The correct direction is trivial to find, because if φ̃(xi, tk) > 0 then we need to
increase tk . Otherwise we need to decrease tk . In practice, we use �tmax = 5�x where �x is the grid cell size.

Another issue is that errors in the approximation of φ̃(xi, tk) can lead to more secant iterations. This can be reduced by
solving for φ̃(xi, tk) to a higher tolerance. However, requiring more iterations to approximate φ̃(xi, tk) more accurately can
be more costly than just using more secant iterations with a less accurate (but more efficient) approximation to φ̃(xi, tk).
We discuss the process and cost of solving for φ̃(xi, tk) in Section 2.2. Our modified secant algorithm is summarized in
Algorithm 1.

2.2. Hopf–Lax formula for φ̃(xi, tk)

As in Lee et al. [4] we obtain the solution of Equation (2) with the Hopf–Lax formula

φ̃(xi, tk) = miny∈Rn

{
φ0(y) + tk H∗

(
xi − y

tk

)}
where H∗ is the Fenchel–Legendre Transform of H = ‖ · ‖2

H∗(x) =
{

0 ‖x‖2 ≤ 1

∞ otherwise

or equivalently

φ̃(xi, tk) = min
y∈B(xi,tk)

φ0(y) (4)

10 M. Royston et al. / Journal of Computational Physics 365 (2018) 7–17
Fig. 1. The two vertical lines are the boundary of minimization. Grid node xi = 1.8 is in the middle of the region, and also the starting guess for projected
gradient descent. The sequence of points leading off to the right represent the subsequent steps of gradient descent. These points converge to the incorrect
argmin x = 2.5. The correct solution is at x = 0.4. In order to converge to this point, the initial guess would have to be less than 1.25.

where B(xi, tk) is the ball of radius tk around grid node xi . Thus the problem of evaluating φ̃(xi, tk) amounts to finding the
minimum of the initial φ0 over a ball. While Lee et al. [4] use Split Bregman iteration to solve this, we instead simply use
projected gradient descent. We used a few hundred projected gradient iterations in practice since this was faster than Split
Bregman in parallel implementations due to its relative simplicity. Using y0

k as an initial guess for the argmin of φ0 over the
ball B(xi, tk), we iteratively update the approximation from

ỹ j+1
k = y j

k − γ ∇φ0(y j
k) (5)

y j+1
k = PROJB(xi,tk)(ỹ j+1

k) (6)

where

PROJB(xi,tk)(y) =
{

y ‖xi − y‖2 ≤ tk

xi − tk xi−y
‖xi−y‖2

otherwise

In practice, we set the step size γ equal to the grid spacing �x. Note that the gradients ∇φ0(y j
k) are computed using the

bilinear interpolation kernels Nl(x) as ∇φ0(y j
k) =

∑
l φ

0
l ∇Nl(y j

k). We emphasize that for efficiency the sum over l can be
taken over only the four grid nodes surrounding the cell that the argument y j

k is in. We further note that the index for the

cell containing the argument y j
k can be found in constant time using floor(

y j
αk

�x) where y j
αk are the components of y j

k . In
general, φ0 is a non-convex function defined from the grid interpolation and projected gradient descent will only converge
to a local minimum. We illustrate this in Fig. 1. Failure to converge to a global minimum can lead to large errors in the
approximation of φ̃(xi, tk). While it is impractical to ensure we achieved a global minimizer, it is possible to find multiple
local minimizers increasing the probability we find a global minimizer. We solve (4) multiple times with different initial
guesses y0

k and then take the minimum over these solutions to come up with a final answer that is likely to be close to a
global minimizer. We found in practice, on the order of one guess per grid cell in the ball B(xi, tk) is sufficient to find a
global minimizer. For problems without many local extrema the number of initial guesses can be reduced. In general when
finding φ̃(xi, tk) we use as initial guesses PROJB(xi,tk)(yk−1) where

yk−1 = argmin
y ∈ B(xi, tk−1)

φ0(y)

is the argmin of φ0 used in the previous secant iteration as well as a small number of random points in B(xi, tk). (See
Fig. 2.) We use this strategy because PROJB(xi,tk)(yk−1) tends to be a good guess for the global minimum. In general, it is
very likely that at the next step, the minimum will either be the same point, or along the boundary. Therefore, we prioritize
random initial guesses near the boundary of the ball. In fact, for tk−1 < tk we know that the argmin will be at a distance
s from xi with tk−1 ≤ s ≤ tk so in theory we should only sample in the annulus. However, in practice we do not have full
confidence in the argmin attained at iteration k − 1 since our procedure is iterative. Allowing for initial guesses at some
locations closer to xi than tk−1 admits the possibility of finding a more accurate argmin. Thus, we found that skewing the
sampling density to be higher towards the boundary of the ball struck a good balance between efficiency and accuracy. We
illustrate this process in Fig. 4.

M. Royston et al. / Journal of Computational Physics 365 (2018) 7–17 11
Fig. 2. The figure illustrates representative random initial guesses used in solving for φ̃(xi , tk). In addition we use an initial guess equal to the minimizer
computed in the previous secant iteration shown in magenta. (For interpretation of the colors in the figure(s), the reader is referred to the web version of
this article.)

Fig. 3. The plots above are the points (φ̃(xi, tk), tk) found when running our algorithm with different choices of random guess and gradient descent
iterations on circle initial data. The left most plot was run with 100 random guesses, and 1 gradient descent iteration. The middle plot was run with 1
random guess, and 100 gradient descent iterations. The right plot was run with 1 random guess and 5 gradient descent iterations. Note that in all cases,
the correct root was found.

Failure to find the global minimum over the ball can cause unpredictable behavior in the secant iteration for t̂ . This
includes false positives where a tk is incorrectly interpreted as a root. However, continuing to run secant to a fixed large
number of iterations usually corrects for this. In general, there is a tradeoff between the number of initial guesses and
iterations of projected gradient and the number of secant iterations. We illustrate this in Fig. 3 which shows the path to
convergence for a few choices of iteration parameters. When φ̃(xi, tk) is solved with high accuracy, the secant iteration
converges with minimal overshoot in 7 iterations. When φ̃(xi, tk) is not solved to high accuracy, secant overshoots by a
large margin, and takes 16 iterations to converge, but notably still converges. However because each iteration is cheaper,
the total runtime is lower to reach the same convergence for t̂ . In practice we found that a few hundred projected gradient
iterations combined with our initial guess sampling strategy struck a good balance between accuracy and efficiency.

2.3. Computing in a narrow band

In many applications, only data close to the interface is needed. Since each grid node can be solved for independently, the
Hopf–Lax approach naturally lends itself to narrow banding strategies for these applications. We provide a narrow banding
strategy based on a coarse initial grid computation followed by a fine grid update in the narrow band. We first redistance
the function on the coarse grid, then we interpolate values from the coarse grid to the fine grid. We then only recompute
values on the fine grid that are smaller than a threshold value and we use the value interpolated from the coarse nodes as
an initial guess t0 for the computation on the fine grid. As an example see Fig. 5.

12 M. Royston et al. / Journal of Computational Physics 365 (2018) 7–17
Fig. 4. In this image, the red dot in the center is xi , the solid red line represents the ball of radius tk and the dotted line represents the ball of radius tk−1.
The magenta point was the approximate argmin yk−1 of φ0 over the ball of radius tk−1. Since it is unlikely for the minimizer to be inside of tk−1 we use
coarse (random) grid initial guesses in the interior. However, since it is possible that expanding t will move the minimizer to a different location we take
a large number of initial guesses along the boundary of tk .

Fig. 5. A coarse grid 8× smaller than the fine grid was solved for initially. Using those values the fine grid was only solved on cells where the distance
to the boundary could be less than 0.1 represented as the solid areas of the left image. In the right image those coarse areas are defined from bilinear
interpolation. This coarse/banding approach provided approximately a 2.5 times increase in performance.

2.4. Computing geometric quantities

The Hopf–Lax formulation naturally allows us to compute normals (n = ∇φ) and curvatures (∇ · n) at the grid nodes.
As pointed out in Lee et al. [4], as the argmin yk from Equation (5) is iterated to convergence, it approaches the closest to
point to the grid node xi on the zero isocontour of φ0. Therefore, recalling that when tk has converged (within a tolerance)
to the root t̂ of φ̃(x, ̂t) = 0, tk is approximately the distance to the zero isocontour, we can compute the unit normal at the
grid node from

n(xi) = xi − yk

tk
.

Notably, this approximation is very close to the exact signed distance function with zero isocontour determined by the
bilinearly interpolated φ0. It is as accurate as the argmin yk so it essentially only depends on the accuracy of the secant
method. We get this very accurate geometric information for free. Moreover, the curvature (∇ · n) can be computed accu-

M. Royston et al. / Journal of Computational Physics 365 (2018) 7–17 13
Fig. 6. Scaled circle: the initial data is φ0 = exp(x) ∗ (.125 − (.5 − x)2 + (.5 − y)2). The zero level set is a circle of radius .25 centered around (.5,.5).

Fig. 7. Square: the initial data is φ0 = min(.25 − |x − .5|, .25 − |y − .5|). The zero level is a square with side length .5 centered around (.5,.5).

rately by taking a numerical divergence of n(xi) that would have accuracy equal to the truncation error in the stencil (since
no grid-based errors are accumulated in the computation of n(xi)).

3. Results

All of the following results were run on an Intel 6700k processor with an Nvidia GTX 1080. The domain for each problem
was set to be [0, 1] × [0, 1] and was run on a 512 × 512 grid. To ensure efficient performance on the GPU, both projected
gradient descent and the secant method were run for a fixed number of iterations rather than to a specific tolerance. All
timings listed in this section are averages over 5 seperate runs, with the exception of the Vortex problem which is already

14 M. Royston et al. / Journal of Computational Physics 365 (2018) 7–17
Fig. 8. Union of circles: the initial data is φ0 = max((.25 − ‖(.3, .5) − (x, y)‖2), (.25 − ‖(.7, .5) − (x, y)‖2)). The zero level set is a union of two circles both
with radius .25, one centered at (.3,.5) and the other centered at (.7,.5).

Fig. 9. Many local minima: the objective function is φ0 = sin(4 ∗π ∗ x) ∗sin(4 ∗π ∗ y) − .01. The zero level set is a group of rounded squares that almost
touch.

an average. This is due to the fact that we noticed in practice variations of up to 10% in the individual runtimes of a given
problem

Problem num_secant num_rand num_proj Timing (ms)

Circle 10 5 100 47.567
Two points 10 5 100 45.199
Vortex (per frame) 10 5 200 73.248
Square 10 4 200 67.582
Sine 10 5 200 71.429

Fig. 6 shows initial data φ0 with a zero-isocontour given by a circle with radius .25. Fig. 7 shows a more complicated test.
The zero-isocontour is a square bounded between [.25, .75] in x and y. The corners present rarefaction fans, and the inside

M. Royston et al. / Journal of Computational Physics 365 (2018) 7–17 15
Table 1
Timing and error at different grid resolutions using a square as our zero level set. The
average L2 error is calculated by calculating the L2 distance between the computed
answer and the analytic solution.

Size Timing (ms) Average L2 error

32 × 32 3.303 6.67 ∗ 10−05

64 × 64 3.392 1.5917 ∗ 10−05

128 × 128 4.477 3.8723 ∗ 10−06

256 × 256 17.8400 9.7391 ∗ 10−07

512 × 512 67.533 2.4624 ∗ 10−07

1024 × 1024 274.216 6.4343 ∗ 10−08

2048 × 2048 1185.87 2.3843 ∗ 10−08

Table 2
Timing in ms showing scaling in number of GPUs. The first two columns show the time it takes to run our
problem when we include the timing cost of transferring the grid data to the GPU (approximatly 1.2 ms), while
the last two columns show the scaling without the cost of transferring data.

GPUs Total (w/) Per GPU (w/) Total (w/o) Per GPU (w/o)

1 125.10 125.10 124.05 124.05
2 126.25 63.13 124.76 62.38
4 130.17 32.54 124.92 31.23
8 139.26 17.41 131.10 16.39
16 149.26 9.33 133.24 8.33
32 167.97 5.25 133.07 4.1585
64 206.07 3.22 134.85 2.11

Fig. 10. Parallel speed up is plotted both with and without including the cost of updating memory on the GPU. With 64 GPUs the memory update can take
up to 33% of the runtime. However without the memory update (i.e. if the data is already on the GPU) the method scales simply.

needs to handle sharp corners along the diagonals. Because of these difficulties (especially the sharp gradient in our original
interpolated φ0), more work is needed in resolving the projected gradient descent step to ensure quick convergence of
secant method. The zero-isocontour shown in Fig. 8 is the union of two overlapping circles. Like in Fig. 6 the gradient is
fairly smooth and thus requires less computation to successfully converge in gradient descent. In Fig. 9 we demonstrate our
algorithm with a large number of local minima. This problem requires more projected gradient iterations than the simpler
examples.

Fig. 11 shows our method being used in a level set advection scheme using a simple vortex test. Like previous problems
it was run on a 512 × 512 grid. For this problem the average time per frame for redistancing was 73.248 ms.

3.1. Scaling

The results in Table 1 was run with the square given in Fig. 7 with the same parameters. The poor scaling at the low
resolutions is due to not using all of the threads possible on the GPU.

For Table 2 we ran our algorithm on the initial data in Fig. 6 with a 1024 × 1024 grid. The problem was broken up into
sub domains and each domain was run separately on the GPU. The performance results are shown in Fig. 10. The scaling
is nearly optimal, but breaks down at high number of GPUs when we include the time it takes to transfer the data to the
GPU. The transfer time takes approximatly 1.2 ms. If we ignore the time it takes to transfer data to the GPU we get a result
that is close to being perfectly parallel. We also show this in Fig. 10.

16 M. Royston et al. / Journal of Computational Physics 365 (2018) 7–17
Fig. 11. Practical application: vortex advection test at t = 0,1,2,3,4,5.

Acknowledgements

The authors were partially supported by ONR grants N000141410683, N000141210838, N000141712162, N000141110719,
N000141210834, DOE grant DE-SC00183838, DOD grant W81XWH-15-1-0147, NSF grant CCF-1422795 and an Intel STC-

M. Royston et al. / Journal of Computational Physics 365 (2018) 7–17 17
Visual Computing Grant (20112360) as well as a gift from Disney Research. Byungjoon Lee was supported in part by NRF
grant 2017R1C1B1008626 and POSCO Science Fellowship of POSCO TJ Park Foundation.

References

[1] J.N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Trans. Autom. Control 40 (9) (1995) 1528–1538.
[2] J.A. Sethian, A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci. 93 (4) (1996) 1591–1595.
[3] H. Zhao, A fast sweeping method for eikonal equations, Math. Comput. 74 (250) (2005) 603–627.
[4] B. Lee, J. Darbon, S. Osher, M. Kang, Revisiting the redistancing problem using the Hopf–Lax formula, J. Comp. Physiol. 330 (2017) 268–281.
[5] J. Darbon, S. Osher, Algorithms for overcoming the curse of dimensionality for certain Hamilton–Jacobi equations arising in control theory and else-

where, Res. Math. Sci. 3 (1) (2016) 19.
[6] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations, J. Comp. Physiol. 79 (1)

(1988) 12–49.
[7] S. Osher, R.P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, Springer, New York, N.Y., 2003, http://opac .

inria .fr /record =b1099358.
[8] M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys. 114 (1) (1994)

146–159.
[9] G. Russo, P. Smereka, A remark on computing distance functions, J. Comput. Phys. 163 (1) (2000) 51–67.

[10] M.G. Crandall, P.-L. Lions, Two approximations of solutions of Hamilton–Jacobi equations, Math. Comput. 43 (167) (1984) 1–19.
[11] E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1) (1959) 269–271.
[12] H. Zhao, Parallel implementations of the fast sweeping method, J. Comput. Math. (2007) 421–429.
[13] M. Detrixhe, F. Gibou, C. Min, A parallel fast sweeping method for the eikonal equation, J. Comput. Phys. 237 (2013) 46–55.
[14] M. Detrixhe, F. Gibou, Hybrid massively parallel fast sweeping method for static Hamilton–Jacobi equations, J. Comput. Phys. 322 (2016) 199–223.
[15] M. Herrmann, A domain decomposition parallelization of the fast marching method, Tech. rep., DTIC Document, 2003.
[16] J. Yang, F. Stern, A highly scalable massively parallel fast marching method for the eikonal equation, J. Comput. Phys. 332 (2017) 333–362.
[17] W.-k. Jeong, R. Whitaker, et al., A fast eikonal equation solver for parallel systems, in: SIAM Conf. Comp. Sci. Eng., Citeseer, 2007.
[18] M. Breuß, E. Cristiani, P. Gwosdek, O. Vogel, An adaptive domain-decomposition technique for parallelization of the fast marching method, Appl. Math.

Comput. 218 (1) (2011) 32–44.
[19] F. Dang, N. Emad, Fast iterative method in solving eikonal equations: a multi-level parallel approach, Proc. Comput. Sci. 29 (2014) 1859–1869.

http://refhub.elsevier.com/S0021-9991(18)30045-7/bib7473697473696B6C69733A313939353A666D6Ds1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib7365746869616E3A313939363A66617374s1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib7A68616F3A323030353A66617374s1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib6C65653A323031373A72657669736974696E67s1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib646172626F6E3A323031363A616C676F726974686D73s1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib646172626F6E3A323031363A616C676F726974686D73s1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib6F736865723A313938383A66726F6E7473s1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib6F736865723A313938383A66726F6E7473s1
http://opac.inria.fr/record=b1099358
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib737573736D616E3A313939343A726564s1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib737573736D616E3A313939343A726564s1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib727573736F3A323030303A726564s1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib6372616E64616C6C3A313938343A726564s1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib64696A6B737472613A313935393A666D6Ds1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib7A68616F3A323030373A706172616C6C656Cs1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib64657472697868653A323031333A706172616C6C656Cs1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib64657472697868653A323031363A687962726964s1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib686572726D616E6E3A323030333A646F6D61696Es1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib79616E673A323031373A70666D6Ds1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib6A656F6E673A323030373A66617374s1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib6272657573733A323031313A6164617074697665s1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib6272657573733A323031313A6164617074697665s1
http://refhub.elsevier.com/S0021-9991(18)30045-7/bib64616E673A323031343A66617374s1
http://opac.inria.fr/record=b1099358

	Parallel redistancing using the Hopf-Lax formula
	1 Introduction
	2 Method
	2.1 Secant method for roots of φ̃(x i,t̂) = 0
	2.2 Hopf-Lax formula for φ̃(x i,tk)
	2.3 Computing in a narrow band
	2.4 Computing geometric quantities

	3 Results
	3.1 Scaling

	Acknowledgements
	References

