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Abstract

We present a cut cell method in R2 for enforcing Dirichlet and Neumann boundary conditions with nearly incompress-
ible linear elastic materials in irregular domains. Virtual nodes on cut uniform grid cells are used to provide geometric
flexibility in the domain boundary shape without sacrificing accuracy. We use a mixed formulation utilizing a MAC-
type staggered grid with piecewise bilinear displacements centered at cell faces and piecewise constant pressures at
cell centers. These discretization choices provide the necessary stability in the incompressible limit and the neces-
sary accuracy in cut cells. Numerical experiments suggest second order accuracy in L∞. We target high-resolution
problems and present a class of geometric multigrid methods for solving the discrete equations for displacements and
pressures that achieves nearly optimal convergence rates independent of grid resolution.
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1. Introduction

We focus on the equilibrium equations of linear elasticity in an arbitrary domain Ω

−∇ · σ(u) = f in Ω (1)
u = u0 on Γd (2)

(σ(u) · n) = τ on Γn. (3)

We use u to denote the material displacement map, σ is the Cauchy stress tensor, f is the external force per unit area,
u0 is the prescribed Dirichlet boundary displacements (over the Dirichlet portion of ∂Ω: Γd) and τ is the prescribed
external surface traction (over the Neumann portion of ∂Ω: Γn). In linear elasticity, the stressσ(u) is linearly dependent
on the Cauchy strain ε(u):

ε(u) =
∇u + (∇u)T

2
(4)

σ(u) = 2µ ε(u) + λ tr ε(u) I (5)
= µ (∇u + (∇u)T ) + λ (∇ · u) I. (6)

Therefore, the equations of linear elastic equilibrium can be equivalently written as

−(µ∆I + (λ + µ)∇∇T )u = f in Ω (7)
u = u0 on Γd (8)

µ(un + ∇(u · n)) + λ(∇ · u)n = τ on Γn. (9)
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When supporting irregular domain geometries, a natural choice for the numerical approximation of these equa-
tions is the finite element method (FEM) with unstructured meshes that conform to the geometry of ∂Ω. However,
meshing complex geometries can prove difficult and time-consuming when the boundary frequently changes shape.
This task is even more difficult when using the more elaborate element types seen in mixed FEM formulations. Mixed
formulations are typically necessary for stability with the nearly incompressible materials we consider here. In many
applications, such as shape optimization for elastic materials or crack progagation, it is necessary to change the
geometry of the domain at each iteration of a simulation. In such cases, frequent unstructured remeshing can be pro-
hibitively costly (especially in 3D). Also, many numerical methods, such as finite differences, do not naturally apply
to unstructured meshes. These concerns motivated the development of “embedded” (or “immersed”) methods that
approximate solutions to (7) on Cartesian grids or structured meshes that do not conform to the boundary. Retention
of higher order accuracy in L∞ with such embedding strategies is an ongoing area of research. Typically, the difficulty
is to determine numerical stencils near the domain boundary that retain the accuracy achieved in the interior, away
from the irregular features. While the accuracy of the discretization is an issue, the ability to use a structured and
regular grid greatly facilitates the implementation of efficient solution methods. Furthermore, for high resolution dis-
cretizations, particularly in the case of nearly incompressible materials, efficient solution of the discrete systems can
be challenging. In these cases, direct methods become too slow and memory intensive. Geometric multigrid meth-
ods and domain decomposition approaches have been shown to provide very favorable performance in this setting,
however their application to embedded discretizations of irregular domains is not straightforward. Ultimately, special
attention must be paid near the boundary for both discretization accuracy and efficient numerical linear algebra.

With these concerns in mind, we introduce a second order virtual node method for approximating the equations
of linear elastic equilibrium with irregular embedded Neumann and Dirichlet boundaries on a uniform Cartesian grid.
We use a regular grid because it simplifies the implementation, permits straightforward Lagrange multiplier spaces for
Dirichlet constraints and naturally allows for higher order accuracy in L∞. Furthermore, the approach has excellent
potential for efficient parallel implementation as indicated by the similarities to the first order method investigated in
[1]. The method is most suited for problems like level set-based shape optimization where the geometry of the domain
is frequently changing and constant remeshing is a clearly inferior alternative to embedding (see e.g [2–7]). Also, we
allow for nearly incompressible materials by introducing pressure as an additional unknown in a mixed variational
formulation. Our discretization of this variational formulation is then based on a MAC-type staggering of x and y-
component displacements with pressures at cell centers. Our approach combines piecewise bilinear interpolation of
displacement components with the addition of “virtual” nodes on cut cells that accurately account for the irregular
shape of the geometry boundary. The variational nature of the method naturally enables symmetric numerical stencils
at the boundary. We use Lagrange multipliers to enforce embedded Dirichlet conditions weakly. In the general case,
our choice of Lagrange multiplier space admits an efficient means for smoothing boundary equations in our geometric
multigrid method for solving the discretized equations. Numerical experiments indicate second order accuracy in L∞

independent of Poisson’s ratio, domain geometry or boundary condition type.
The remainder of the paper proceeds as follows: in section 2 we discuss results from existing methods; in section

3 we discuss the mixed variational formulation we use to accurately handle the nearly incompressible case; in section
3.1 we detail our use of embedding over MAC-type staggered grids to discretize the mixed formulation; in section 4
we develop a novel approach to enforcing Dirichlet boundary conditions as a constraint on the Neumann problem and
lastly we discuss a novel geometric multigrid method for the solution of our discretized equations in section 5.

2. Existing methods

Our approach is second-order accurate in L∞ with both embedded Neumann and embedded Dirichlet boundary
conditions over irregular domains and our discrete systems are developed to facilitate a class of mulitgrid methods
that achieve nearly optimal convergence rates independent of grid resolution. Furthermore, our method retains these
properties with nearly incompressible materials. While there are many existing approaches for linear elasticity, par-
ticularly in the case of unstructured mesh based approaches, ours is the first embedded method to support this feature
set. In our discussion of existing approaches, we will focus only on methods that avoid unstructured meshing when
addressing irregular boundaries for incompressible materials. Also, we will discuss methods addressing the difficul-
ties that arise when ensuring scalability to high resolution problems, particularly in the case of nearly incompressible
materials.
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Embedded techniques use a computational domain that simply encompasses rather than geometrically adheres to
the irregular domain (see Figure 1). This avoids the difficulties associated with unstructured mesh generation, but can
complicate the enforcement of boundary conditions. A good review of these issues is given by Lew et al. in [8]. They
point out that these techniques actually originated with the papers of Harlow and Welch [9] and Charles Peskin [10], at
least in the context of incompressible materials. Some of the first embedded methods were fictitious domain methods
by Hyman [11] and Saul’ev [12]. The fictitious domain approach has been used with incompressible materials in a
number of works [13–21]. These approaches embed the irregular geometry in a more simplistic domain for which
fast solvers exist (e.g. Fast Fourier Transforms). The calculations include fictitious material in the complement of
the domain of interest. A forcing term (often from a Lagrange multiplier) is used to maintain boundary conditions at
the irregular geometry. Although these techniques naturally allow for efficient solution procedures, they depend on a
smooth solution across the embedded domain geometry for optimal accuracy, which is not typically possible.

The extended finite element method (XFEM) and related approaches in the finite element literature also make
use of geometry embedded in regular elements. Although originally developed for crack-based field discontinuities
in elasticity problems, these techniques are also used with embedded problems in irregular domains. Daux et al.
first showed that these techniques can naturally capture embedded Neumann boundary conditions [22, 23]. These
approaches are equivalent to the variational cut cell method of Almgren et al. in [24]. Enforcement of Dirichlet
constraints is more difficult with variational cut cell approaches [8, 25] and typically involves a Lagrange multiplier
or stabilization. Dolbow and Devan recently investigated the convergence of such approaches with incompressible
materials and point out that much analysis in this context remains to be completed [26]. Despite the lack of thorough
analysis, such XFEM approaches appear to be very accurate and have been used in many applications involving
incompressible materials in irregular domains [27–31].

There are also many finite difference (FDM) and finite volume methods (FVM) that utilize cut uniform grid cells.
Many of these methods have been developed in the context of incompressible flow. For example, Almgren et al. use cut
uniform bilinear cells to solve the Poisson equation for pressures in incompressible flow calculations [24]. Marelle et
al. use collocated grids and define define sub cell interface and boundary geometry in cut cells via level sets [32]. Ng et
al. also use level set descriptions of the irregular domain and achieve second order accuracy in L∞ for incompressible
flows [33]. The approach of Batty and Bridson is similar, but not as accurate [34]. Although not technically a cut
cell approach, the immersed interface method has been used to improve accuracy for incompressible flow calculations
in irregular domains [21, 35–39]. Cut cell FDM and FVM have also been developed for incompressible and nearly
incompressible elastic materials. Bijelonja et al. use cut cell FVM to enforce incompressibility more accurately than
is typically seen with FEM [40]. Beirão da Veiga et al. use polygonal FVM cells to avoid remeshing with irregular
domains [41]. Barton et al. [42] and Hill et al. [43] use cut cells with Eulerian elastic/plastic flows.

Many approaches have been proposed to solve elasticity equations in a scalable way at high resoultions. For
this class of problems, iterative methods are usually employed rather than direct methods due to the amount memory
needed to use such methods. For iterative methods to be scalable, we mean that the method requires only a constant
(and small) number of iterations to obtain a solution and that that constant is independent of the grid resolution. While
many methods of this type have proven quite effective, accommodating mixed boundary conditions on an embedded
interface is highly nontrivial, especially when efficiency of implementation is a priority. Most methods have also
been created specifically to work with either pure Dirichlet or pure traction boundary conditions, but have not been
demonstrated to be effective in both cases. Constructing preconditioners for solving the KKT systems that result from
discretizing the equations in a mixed formulation have been studied by Klawonn [44, 45] and Bramble and Pasciak
[46]. Work has also been done on using domain decomposition methods with PCG [47] and GMRES [48] to solve
Stokes and elasticity problems. Balancing domain decomposition by constraints (BDDC) has also been used to build
preconditioners for solving these problems [49, 50]. Many authors have also looked at applying multigrid methods
to problems in solid mechanics (e.g. [1, 51–62]), including handling issues arising from nearly incompressible ma-
terials. Mixed FEM formulations are one example that maintain good multigrid convergence properties for nearly
incompressible materials demonstrated on the pure Dirichlet boundary case [54, 58, 61]. FOSLS methods have been
demonstrated to produce systems that can be effectively solved using algebraic multigrid methods by rewriting the
elasticity equations as a first order system using least squares [55, 60]. Multigrid applied to FEM discretized equations
using a smoother based on a Schur complement has been studied by different authors [57, 59]. While demonstrat-
ing the ability to solve large problems, the Schur complement approach requires the action of the inverse of the
displacements matrix in the smoothing process which is a more expensive smoothing operation than that offered by
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other methods. Distributive smoothers offer a different option for the smoothing process that has proved effective on
elasticity equations discretized with FEM [56] and on staggered grids [62]. In our approach, we will look at using
distributive smoothing similar to those described in [62].

3. Mixed finite element formulation

In order to accurately handle linear elastic materials near the incompressible limit, we use an augmented form
of the equilibrium equations. By introducing a pressure variable as an unknown, we can achieve a stable numerical
discretization independent of the degree of incompressibility. We will use the weak form of this augmented system
to derive a mixed finite element formulation [63]. The augmented form of our equations arises by introducing p =

−λ/µ∇ · u. With this definition, σ(u) = µ (∇u + (∇u)T ) − µ p I and the derived PDE

−µ(∆I + ∇∇T )u + µ∇p = f in Ω (10)

−µ∇ · u −
µ2

λ
p = 0 in Ω (11)

u = u0 on Γd (12)
µ(un + ∇(u · n)) − µp n = g on Γn (13)

is then equivalent to the original PDE.
We use this augmented form of the equations to derive an equivalent variational form of the linear elastic equilib-

rium equations. A weak form can be derived by taking the inner product of the strong form with an arbitrary vector
valued function v ∈ V0 = (H1

0,Γd
(Ω))d and by enforcing the equation p = −λ/µ∇ · u weakly:

Find (u, p) ∈ H1(Ω) × H1(Ω) × L2(Ω),u|Γd = u0, such that (14)ˆ
Ω

2µ
(
∇u + ∇uT

2

)
:
(
∇v + ∇vT

2

)
− µp(∇ · v) dx (15)

= −

ˆ
Ω

f · v dx +

ˆ
∂Ω

g · v ds ∀v ∈ H1
0,Γd

(Ω) × H1
0,Γd

(Ω) (16)
ˆ

Ω

(
−µq∇ · u −

µ2

λ
pq

)
dx = 0 ∀q ∈ L2(Ω). (17)

3.1. Discretization
We discretize this variational formulation using a mixed finite element method defined on a MAC-type staggered

grid. Han et al. demonstrated the stability and optimal convergence of this formulation applied to the Stokes equa-
tions on a square domain [64]. We generalize this approach to the case of nearly incompressible linear elasticity in
embedded domains. We approximate the Sobolev space V = H1(Ω)×H1(Ω) with a finite element subspace Vh, where
each displacement component of a function in Vh is represented as a piecewise bilinear scalar function defined on a
staggered quadrilateral grid (see Figure 1). To be more specific, consider the staggered grids:

Gx
h = {(ih, ( j − 1/2)h) : (i, j) ∈ Ix ⊂ Z2},

G
y
h = {((i − 1/2)h, jh) : (i, j) ∈ Iy ⊂ Z2}.

Here, h is the discrete spacing between grid points. Furthermore, we use the following notation to denote quadrilaterals
defined by these grids:

T x
i j = {(x, y) : ih < x < (i + 1)h, ( j − 1/2)h < y < ( j + 1/2)h},

T y
i j = {(x, y) : (i − 1/2)h < x < (i + 1/2)h, jh < y < ( j + 1)h}.

The sets Ix and Iy used in the definition of grids Gx
h and Gy

h are defined as the collection of vertices incident on some
quadrilateral T x

i j or T y
i j, respectively, whose intersection with the domain Ω is non-empty. In other words, Ix and Iy are

the sets of vertices in the staggered lattices that are at most a distance of h away from Ω. Henceforth, we will use

T x
h = {T x

i j : T x
i j ∩Ω , ∅}
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and
T

y
h = {T y

i j : T y
i j ∩Ω , ∅}

to denote the collection of x and y grid quadrilaterals that intersect (or embed) the domain Ω. We construct two
subspaces of H1(Ω) based on these quadrangulations respectively:

Vh
x = {vh ∈ C(0)(Ω) : vh|T x

i j
∈ Q1(T x

i j) ∀ T x
i j ∈ T

x
h },

Vh
y = {vh ∈ C(0)(Ω) : vh|T y

i j
∈ Q1(T y

i j) ∀ T y
i j ∈ T

y
h }

where Q1(T k
i j) is the space of bilinear functions on the quadrilateral T k

i j. For simplicity of notation in subsequent
equations we will also use mappings η1 : I1 = {1, 2, ...,Nx} → Ix and η2 : I2 = {1, 2, ...,Ny} → Iy to associate each x
and y grid vertex with a unique integer between 1 and Nx = |Ix| and 1 and Ny = |Iy| respectively. With this convention,
any approximated solution u ∈ Vh

x × Vh
y can be expressed as

u(x) =


∑
k1∈I1

u1k1 N1k1 (x)∑
k2∈I2

u2k2 N2k2 (x)

 (18)

where N1k1 and N2k2 are the commonly used piecewise bilinear interpolating functions associated with nodes k1 and k2
respectively in T x

h and T y
h . Our discrete equations for the approximate solution u can thus be seen to be over Nx + Ny

unknowns.

(a) T p
h (b) T x

h (c) T y
h

Figure 1: Staggered grid finite element quadrangulation and embedded domain boundary.

We additionally approximate the space for pressure Vp = L2(Ω) with a piecewise constant finite element space Vh
p

defined on a quadrangulation T p
h over the primary grid (or henceforth, the pressure grid) Gp

h :

G
p
h = {((i + 1/2)h, ( j + 1/2)h) : (i, j) ∈ Ip ⊂ Z2},

T p
i j = {(x, y) : ih < x < (i + 1)h, jh < y < ( j + 1)h},

T
p

h = {T p
i j : T p

i j ∩Ω , ∅},

Vh
p = {ph ∈ L2(Ω) : ph|T p

i j
∈ P0(T p

i j) ∀ T p
i j ∈ T

p
h }

where P0(T p
i j) is the space of constant functions on the quadrilateral T p

i j. The gridGp
h is a cell-centered grid (as opposed

to a node-centered grid, such as Gx
h or Gy

h). That is, we assume that pressure variables live at the cell centers of this
grid. In other words, there is one pressure variable located in each T p

i j ∈ T
p

h . The set Ip is defined similarly to Ix

and Iy, however here it refers to the collection of cell centered indices in the grid Gp
h whose associated quadrilaterals
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T p
i j have a non-zero intersection with Ω. For the sake of simplicity in subsequent equations, we again use a mapping
η3 : I3 = {1, 2, ...,Np} → Ip to associate each cell in the pressure grid with a unique integer between 1 and Np = |Ip|.
Thus, any approximated solution of the pressure has the following representation:

p(x) =
∑
k3∈I3

pk3χT p
k3

(x) (19)

where χT p
k
(x) is the characteristic function for the quadrilateral T p

k . That is,

χT p
k
(x) =

{
1, x ∈ T p

k
0, x < T p

k .

We choose test functions v(x) = Nmkm (x)em, m = 1, 2 and substitute the finite element discretization (18), (19) into
each term in the mixed variational form (14),

2µ
ˆ

Ω

∇u + (∇u)T

2
:
∇v + (∇v)T

2
dx

= µ

ˆ
Ω

∇u : (∇v + (∇v)T ) dx

= µ
∑

i, j∈{1,2}

ˆ
Ω

ui, j(vi, j + v j,i) dx = µ
∑

i, j∈{1,2}

ˆ
Ω

ui, j(Nmkm, j(x)δmi + Nmkm,i(x)δm j) dx

= µ
∑

i∈{1,2}

ˆ
Ω

(ui,m + um,i)Nmkm,i(x) = µ
∑

i∈{1,2}

ˆ
Ω

∑
ki∈Ii

uiki Niki,m(x) +
∑

km∈Im

umkm Nmkm,i(x)

 Nmkm,i(x)

= µ
∑

i∈{1,2}

∑
ki∈Ii

uiki

ˆ
Ω

Niki,m(x)Nmkm,i(x) + µ
∑

km∈Im

umkm

∑
i∈{1,2}

ˆ
Ω

N2
mkm,i(x)

−µ

ˆ
Ω

p∇ · vdx = −µ
∑
kp∈Ip

pkp

ˆ
T p

kp
∩Ω

Nmkm,m(x)dx

ˆ
Ω

f · v dx =

ˆ
Ω

fmNmkm (x) dx
ˆ

Γn

g · v ds =

ˆ
Γn

gmNmkm (x) ds.

We can also choose v = 0 and q(x) = χT p
kp

(x) to derive the pressure equations:

−µ
∑

i∈{1,2}

∑
ki∈Ii

uiki

ˆ
T p

kp
∩Ω

Niki,i(x) dx −
µ2

λ

∑
kp∈Ip

pkp

ˆ
T p

kp
∩Ω

1 dx = 0.

Since the variational form is derived from an energy minimization problem, the discretized linear system can
trivially be seen to be symmetric. Specifically, if we take the convention that uh ∈ RNx+Ny is our vector of displacement
unknowns (where we assume that x degrees of freedom are ordered first and y second) and ph ∈ RNp is the vector of
pressure unknowns, then our system over the vector ûh of N = Nx + Ny + Np degrees of freedom is of the form:(

Lh
u GhT

Gh Dh
p

) (
uh

ph

)
=

(
f h

0

)
or L̂hûh = f̂ h

(20)

where ûh = (uh, ph) and f̂ h
= ( f h, 0). Furthermore, our use of regular grids gives the discrete equations a finite differ-

ence interpretation. If we scale the system by 1
h2 , each block in the discrete system approximates the corresponding

differential operator in (10), i.e. (20) discretizes the following equation:

h2
(
−µ(∆ + ∇∇T ) µ∇

−µ∇T −
µ2

λ

) (
u
p

)
=

(
fh2

0

)
. (21)
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The linear system is the Hessian matrix of a saddle point problem, therefore the discretized system is symmetric but
indefinite. In fact, the first diagonal block Lh

u is positive definite, and the other diagonal block is negative definite.

3.2. Implementation details
For ease of implementation, we perform the integrations involved in the discrete equations in an element-by-

element fashion. Each area integral is represented as a sum of integrals over spatially disjoint elements whose union is
the embedded domain. Specifically, we individually address the integration over the intersection of each quadrilateral
of the pressure grid with the embedded domain T p

kp
∩Ω:

ˆ
Ω

N2
mkm,i(x) dx =

∑
kp∈Ip

ˆ
T p

kp
∩Ω

N2
mkm,i(x) dx

ˆ
Ω

Niki,m(x)Nmkm,i(x) dx =
∑
kp∈Ip

ˆ
T p

kp
∩Ω

Niki,m(x)Nmkm,i(x) dx

ˆ
Ω

Nmkm (x) dx =
∑
kp∈Ip

ˆ
T p

kp
∩Ω

Nmkm (x) dx

ˆ
Γn

Nmkm (x) ds =
∑
kp∈Ip

ˆ
T p

kp
∩Γn

Nmkm (x) ds.

In the interior, this simply amounts to evaluating the same integrals over each full quadrilateral T p
kp

. However, at
the boundary, care must be taken to respect the material region alone when the intersection between the pressure
cells and the embedded domain is non-trivial. In both the boundary and interior cases there will be 13 degrees of
freedom involved in the integration over such a pressure cell. This is because the staggering of variables leads to 13
interpolating functions supported over a given pressure cell (6 x-components, 6 y-components and one pressure). In
other words, we express the matrix (or stiffness matrix) in our discrete system as a sum of 13×13 element stiffness
matrices Akp . Furthermore, we break the integrals involved in a given element T p

kp
up into four subintegrals over the

subquadrants (ω1, ω2, ω3, ω4) of T p
kp

(see Figure 3). This is because the integrands are all smooth over these regions.
Notably, they are quadratic and we simply preform these integrations analytically. The elemental stiffness matrix is
accumulated from the following sub-stiffness-matrices Akp = Akp

ω1 + Akp
ω2 + Akp

ω3 + Akp
ω4 . For example, Akp

ω1 involves x1,
x2, x3, x4, y7, y8, y10 and y11 as demonstrated in Figure 3 center, therefore, it only has non-zero values on rows and
columns involving these degrees of freedom. The resulting equations based on those degrees of freedom are shown
in Figure 2. If we order the 13 nodes with indices shown in Figure 3 left, then on the interior of the domain, where
T p

kp
∩Ω = T p

kp
, the sum of these four subintegrals is always the same:

Akp =



µ



1/4 0 0 −1/4 0 0 9/64−3/32−3/64 3/64−1/32−1/64
0 1/4 −1/4 0 0 0 3/64 3/32−9/64 1/64 1/32−3/64
0 −1/4 3/2 −1 0 −1/4−3/32 1/16 1/32 3/32−1/16−1/32

−1/4 0 −1 3/2 −1/4 0−1/32−1/16 3/32 1/32 1/16−3/32
0 0 0 −1/4 1/4 0−3/64 1/32 1/64−9/64 3/32 3/64
0 0 −1/4 0 0 1/4−1/64−1/32 3/64−3/64−3/32 9/64

9/64 3/64−3/32−1/32−3/64−1/64 1/4 0 0 0 −1/4 0
−3/32 3/32 1/16−1/16 1/32−1/32 0 3/2 0 −1/4 −1 −1/4
−3/64−9/64 1/32 3/32 1/64 3/64 0 0 1/4 0 −1/4 0

3/64 1/64 3/32 1/32−9/64−3/64 0 −1/4 0 1/4 0 0
−1/32 1/32−1/16 1/16 3/32−3/32 −1/4 −64 −1/4 0 3/2 0



−µh



−1/8
1/8
−3/4
3/4
−1/8
1/8
−1/8
−3/4
−1/8
1/8
3/4
1/8


−µh

(
−1/8 1/8 −3/4 3/4 −1/8 1/8 −1/8 −3/4 −1/8 1/8 3/4 1/8

)
−
µ2

λ
h2



. (22)

The global stiffness matrix generated from Akp has a stencil shown in Figure 4.
However for boundary cells where T p

kp
∩ Ω , T p

kp
, we have to perform the integrations involved in each of Akp

ωi

carefully, taking into account the boundary geometry. We discuss this in the next section. The process of constructing
the global stiffness matrix A from each of the 13 × 13 element stiffness matrices Akp is explained in Algorithm 1.
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Figure 2: Equations used to build the element stiffness matrix Akp
ω1 .

Figure 3: Left: one interior pressure cell and the variables corresponding to the 13 degrees of freedom of the elemental
stiffness matrix by taking integral over the pressure cell. Right: the four integral subcells of the pressure cell. Center:
the variables that an integral over subcell ω1 contributes to.

3.3. Discrete geometric representation and cut cell integration

We discretize the domain Ω by embedding it in a regular grid. Specifically, we use a signed distance level set
function defined over a doubly refined subgrid:

Gφ = {(ih/2, jh/2)}.

This doubly refined subgrid is thus a superset of all grid nodes in the x, y and p grids. The signed distance values at
the nodes of the doubly refined grid Gφ are used to determine the points of intersection between the zero isocontour
and the coordinate axes aligned edges of Gφ. The boundary of Ω is then approximated by a segmented curve ∂Ωh

connecting these intersection points. The geometric domain is approximated within the region enclosed by ∂Ωh (see
Figure 5). Near the boundary, the domain within each subgrid cell is approximated by a polygon determined from the
boundary edges of the subgrid cell and by straight lines that connect boundary intersection points as demonstrated in
Figure 5. Thus we can think of our discrete domain as a union of doubly refined uncut quadrilaterals on the interior
and cut polygonal regions contained in doubly refined quadrilaterals on the boundary.

This partitioning of the domain into doubly refined quadrilaterals naturally supports our integration conventions
needed for the matrices Akp

ωi discussed in the previous section. The integrals needed for these matrices are evaluated
trivially when ωi is not cut. However when ωi is cut by the boundary, we can still perform the integrations analyti-
cally following ideas from the recent cut cell approach in [65]. The integrands of each term in the matrices Akp

ωi are

8



Algorithm 1 Construction of global stiffness matrix A from elemental Akp

1: A← 0
2: for kp = 1 to Np do
3: if T p

kp
∩Ω = T p

kp
then . Interior cell: use precomputed Akp

4: Use Akp from equation (22)
5: else . Boundary cell: compute Akp from Akp

ωi

6: Perform integration over each subquadrant ωi to compute Akp
ωi

7: Akp = Akp
ω1 + Akp

ω2 + Akp
ω3 + Akp

ω4

8: end if
9: for ip = 1 to 13 do

10: i = mesh(kp, ip) . The mesh maps the 13 degrees of freedom involved in Akp to their position in a global array
11: for jp = 1 to 13 do
12: j = mesh(kp, jp)
13: Ai j+ = Akp

ip jp

14: end for
15: end for
16: end for

Figure 4: Global stiffness matrix stencils centered at an interior x variable (left), y variable (middle) and p variable
(right).
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(a) (b)

Figure 5: A zoom-in view of Figure 1(a). A levelset function is sampled on a doubly refined grid (left); a segmented
curve ∂Ωh is generated to approximate the boundary of the geometric domain (right).

polynomials in x and y of degree 2. That is, each integral is of the form:
ˆ
ωi∩Ω

ax2 + bxy + cy2 + dx + ey + f dx

Our level set based representation of the geometry means that the domain of integration ωi ∩Ω is polygonal. In other
words, we need to evaluate a second order polynomial over a polygonal domain. This task can be done trivially by
noting that

ˆ
ωi∩Ω

ax2 + bxy + cy2 + dx + ey + f dx =

ˆ
ωi∩Ω

∇ ·

(
ax3

3 +
bx2y

2 + cxy2 + dx2

2 + exy + f x
0

)
dx.

That is, because ωi ∩Ω is polygonal and our integrand can be expressed in terms of the divergence of a (non-unique)
cubic function, application of the divergence theorem yields the easily evaluated forumula:

ˆ
ωi∩Ω

∇ ·

(
ax3

3 +
bx2y

2 + cxy2 + dx2

2 + exy + f x
0

)
dx =

N∂(ωi∩Ω)∑
s=1

n1s

ˆ
∂(ωi∩Ω)s

(
â(s)t3 + b̂(s)t2 + ĉ(s)t + d̂(s)

)
dt.

Here, the N∂(ωi∩Ω) is the number of line segments in the boundary of the polygonal domain, ∂(ωi ∩Ω)s is the s-th
segment in the polygonal boundary, parameterized by the arc-length variable t, n1s is the x component of the outward
normal to the s-th segment and â(s), b̂(s), ĉ(s), d̂(s) are the cubic coefficients arising in the boundary integrals over
each segment. Again, each term in the sum can be evaluated analytically. This careful treatment of the integrals
arising in each Akp

ωi is the key to obtaining second order accuracy in L∞.

4. Dirichlet boundary conditions

We have thus far assumed that our solution satisfies the Dirichlet boundary conditions and that our test functions
vanish on the Dirichlet boundary. However, because we use a regular grid that does not conform to the actual domain,
it is not convenient to directly define a finite element space with a specific value at the irregular boundary. Instead, we
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can enforce these conditions weakly using the following variational problem:

find (u, p) ∈ H1(Ω) × H1(Ω) × L2(Ω), such thatˆ
Ω

2µ
(
∇u + ∇uT

2

)
:
(
∇v + ∇vT

2

)
+ µp(∇ · v) dx

= −

ˆ
Ω

f · v dx +

ˆ
∂Ω

g · v ds ∀v ∈ H1
0,Γd

(Ω) × H1
0,Γd

(Ω) (23)
ˆ

Ω

(
−µq∇ · u −

µ2

λ
pq

)
dx = 0 ∀q ∈ L2(Ω) (24)

ˆ
Γd

u · w ds =

ˆ
Γd

u0 · w ds ∀w ∈ (H−1/2(Γd))2. (25)

Here, we introduce the Dirichlet condition as a constraint. Specifically, we require that the L2 inner product of the
solution and an arbitrary function w ∈ (H−1/2(Γd))2 is the same as the inner product of the Dirichlet data u0 with w.
This makes the problem a constrained minimization.

4.1. Discretizing the Dirichlet problem
In order to discretize the Dirichlet condition in the weak formulation, we approximate (H−1/2(Γd))2 using a sub-

space Λh
x×Λh

y = P0(T x∩Γh
d)×P0(T y∩Γh

d), which is composed of piecewise constant functions over x and y component
grid cells that intersect the Dirichlet boundary. Here we use Γh

d to denote the portion of ∂Ωh over which the Dirichlet
constraint is being enforced. We call any x or y cell T i with T i ∩ ∂Ωh , ∅ a boundary cell. The superscript i is used
to denote whether the cell is in the x or y grids with i = 1 signifying an x cell and i = 2 signifying a y cell. We use
wT i = χT i (x)ei as the basis functions for Λh

x × Λh
y = P0(T x ∩ Γh

d) × P0(T y ∩ Γh
d). Here, χT i (x) is the characteristic

function of the cell T i:

χT i (x) =

{
1, x ∈ T i

0, x < T i.

Note that we have one basis function per boundary x or y cell. If we use Nxd and Nyd to denote the number of x and y
boundary cells respectively, we can see that the dimension of the space Λh

x × Λh
y is Nxd + Nyd.

With this approximation, the Dirichlet boundary condition constraint can be expressed as a linear system Bhuh =

uh
0 (Bh ∈ R(Nxd+Nyd)×(Nx+Ny), uh

0 ∈ R(Nxd+Nyd)) where each equation enforces an integral constraint over the intersection
of the discrete boundary Γh

d with some x or y boundary cell T i:∑
ki∈Ii

uiki

ˆ
T i∩Γh

d

Niki (x) ds =

ˆ
T i∩Γh

d

u0i(x) ds

where u0 = (u01, u02). In practice, we evaluate the integral for a given boundary cell T i over the portion of the Dirichlet
boundary curve T i ∩ Γh

d from the four subquadrilaterals of T i arising from the doubly refined grid (as discussed in
section 3.3). This is simple because in each of these subquadrilaterals Γh

d is just a single line segment. We use the
following approximation for the right hand side terms in the constraint system:

ˆ
T i∩Γh

d

u0i(x) ds =

4∑
j=1

ˆ
ωi

j∩Γh
d

u0i(x) ds ≈
4∑

j=1

u0i(c(ωi
j ∩ Γh

d))
ˆ
ωi

j∩Γh
d

1 ds

where ωi
j is one of the four subquadrilaterals of the cell T i and c(ωi

j ∩ Γh
d) is the midpoint of the segment ωi

j ∩ Γh
d. We

use the same treatment for the entries in the matrix on the left hand side:
ˆ

T i∩Γh
d

Niki (x) ds =

4∑
j=1

ˆ
ωi

j∩Γh
d

Niki (x) ds.

We note that the integrand here is simply an x or y bilinear interpolating function. Therefore, the four terms in the sum
can be evaluated analytically because they are simply quadratics in any linear parameterization of a given boundary
segment ωi

j ∩ Γh
d.
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The discrete constrained minimization problem can be solved using a Lagrange multiplier method resulting in the
following KKT system:  Lh

u GhT BhT

Gh Dh
p 0

Bh 0 0


 uh

ph

λh

 =

 f h

0
uh

0

 . (26)

There is one Lagrange multiplier degree of freedom per Dirichlet constraint. In other words, λh is in R(Nxd+Nyd). When
we consider boundary equations in the sections that follow, we temporarily eliminate pressure variables ph with the
following substitution Lh = Lh

u −GhT (Dh
p)−1Gh:(

Lh BhT

Bh 0

) (
uh

λh

)
=

(
f h

uh
0

)
. (27)

This system is extremely ill-conditioned for nearly incompressible materials, however it will simplify the exposition
of the forthcoming discussion of Dirichlet boundary condition treatment. Furthermore, when performing equation
relaxation in our multigrid solver, we temporarily perform this elimination when treating equations near the boundary
of the domain. Before discussing our geometric multigrid solution approach for these systems of equations, we
would like to first discuss some important aspects of the Dirichlet system. Our treatment of the Dirichlet condition is
somewhat nonstandard and we list here a few important details related to the constraint matrix Bh.

1. Bh consists of two decoupled blocks. There is one block for the x boundary equations and one for the y
equations. The only non-zero columns of Bh are associated with nodes that are incident on an x or y boundary
cell. Therefore, for sufficiently interior degrees of freedom, the KKT system is exactly the same as (21) or (37).
That is, although the constraint matrix is in R(Nxd+Nyd)×(Nx+Ny), it really only acts on a small subset of the Nx + Ny

displacement degrees of freedom.
2. Bh ∈ R(Nxd+Nyd)×(Nx+Ny), where (Nxd + Nyd) < (Nx + Ny). In fact,

Bh =

(
Bx 0
0 By

)
,

where Bx ∈ RNxd×Nx and By ∈ RNyd×Ny . However, it can be shown that Bh has full row rank. We refer the reader
to the work [65] for a more detailed discussion of why this is so.

3. Our numerical linear algebra approach to the problem is based on the construction of a (full column rank) matrix
Zh ∈ R(Nx+Ny)×((Nx+Ny)−(Nxd+Nyd)) whose columns span the kernel space of Bh. Since Bh has full row rank, there
exists a column permutation P, such that BhP = [Bm|Bn−m], where Bm ∈ R(Nxd+Nyd)×(Nxd+Nyd) is non-singular and
Bm−n ∈ R(Nxd+Nyd)×((Nx+Ny)−(Nxd+Nyd)). With this permutation, we can construct a so called fundamental basis for
the null-space of BhP:

Zh =

[
−B−1

m Bn−m

I

]
. (28)

4. The vector

ch =

[
B−1

m uh
0

0

]
(29)

satisfies BhPch = uh
0. Therefore, all solutions can be expressed as uh = P(ch+Zhvh) with vh ∈ R((Nx+Ny)−(Nxd+Nyd)).

5. Our construction of a null-space for the Dirichlet constraint allows us to eliminate the Lagrange multipliers.
Substituting uh = P(ch + Zhvh) in (27), we have

LhP(ch + Zhvh) + BhT
λh = f h

Left multiplying this equation with (PZh)T , and applying the property BhPZh = 0, we have

(PZh)T LhPZhvh + (BhPZh)Tλh = (PZh)T ( f h
− LhPch)
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(ZhT
PT LhPZh)vh = (PZh)T ( f h

− LhPch). (30)

That is, if we can solve vh from the reduced system (30), then the KKT system solution can be reconstructed
with uh = P(ch + Zhvh). Without loss of generality, we assume the variables to be reordered such that P = I.
We will make use of this property in the smoother for our geometric multigrid method.

4.2. Constructing the null-space for the Dirichlet constraints
Our treatment of the Dirichlet conditions is based on our ability to construct a null-space Zh satisfying BhZh = 0

and a special solution ch satisfying Bhch = uh
0. The main issue we will discuss now is how to find a fundamental

basis Zh that produces a numerically well-conditioned system of equations. This topic was originally discussed in the
work of Bedrossian et al., [65]. However, we found that in our case of nearly incompressible materials, an even more
aggressive approach is needed. Bedrossian et al. first suggested an ordering for the boundary integral equations and
incident boundary nodes that led to a readily inverted upper triangular Bm. However, they showed that although this
construction was straightforward, the conditioning of this Bm deteriorated exponentially in the discretization resolution
and was thus not practical. They then showed that it is possible to derive a diagonal Bm with a slight modification to
the definition of the constraints. Specifically, they showed that an aggregation scheme where cells of a "double-wide"
grid were used to define the extent of the line integral constraints led to a diagonal Bm. This was done by choosing
the center node of the 9 nodes incident on the four original cells in the "double-wide" cell as the representative node
in the permutation of columns in Bh. In other words, the center node of the four aggregated cells was given the same
index as the row associated with the constraint over those cells. This aggregation of cells is equivalent to replacing a
collection of rows in the original "single-wide" Bh with the sum of the collection of rows. The choice of which rows
to sum together is determined by the "double-wide" cell they belong to. Since no aggregated rows have a non-zero
entry associated with the center node of any other aggregate, the Bm is diagonal and thus Zh is trivially constructed.
This aggregation can equivalently be seen as using a subspace Λ2h

x × Λ2h
y ∩ H−1/2(Γd) that is based on a coarsened

grid. Remarkably, this process does not affect the L∞ convergence behavior of the scheme. Unfortunately, while the
reduced system in [65] had a satisfactory condition number for the Poisson equation with an incomplete Choleksy
preconditioned conjugate gradient solver, we found that this was not the case for nearly incompressible linear elasticity
and geometric multigrid. Specifically, the conditioning of the equations at the boundary was poor enough to make
the treatment of boundary regions prohibitively costly when performing the smoothing operations used in geometric
multigrid.

We propose a new boundary integral constraint aggregation that allows us to generate a diagonal Bm and a better-
conditioned reduced system. We note that the elements of the original Bh are scaled by a segment length; therefore, a
very small segment (associated with a node that is far from the boundary) will generate very small diagonal elements
for a Bm arising from aggregation. We found this to be a source of the suboptimal conditioning. We propose a
modification to the aggregation process that is designed to provide larger diagonal entries in subsequent Bm. We first
define the weight of each node to be the sum of the column in the original "single-wide" Bh. This weight is the
diagonal entry in Bm that would arise from an aggregation of the four cells centered around the node. To increase the
diagonal entries in the final Bm, we simply select four cell aggregates such that the associated representative nodes
will be chosen in descending order of the total weight of each node. After we choose a node to define a four cell
aggregate, the nine nodes incident on the four cells are eliminated from consideration. This process of prioritizing
the aggregation rather than inheriting it from the coarse grid has a drawback. There may be some rows that are never
added to an aggregate region. For these rows, it may be impossible to choose a representative node. We resolve this
by aggregating such a row into a spatially adjacent aggregate. In practice, we also found that limiting representative
nodes in the aggregation to ghost nodes (i.e. those geometrically outside the domain Ω) gave even better conditioning.
We briefly summarize this process in Algorithm 2.

5. Multigrid

We develop an efficient multigrid solver for the discrete systems produced by our method. Our method is purely
geometric, and based on the Multigrid Correction Scheme (see Algorithm 3). The framework admits a simple im-
plementation, however special care is needed to retain near-textbook multigrid convergence rates, especially in the
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Algorithm 2 Aggregation Selection

1: procedure AggregationSelection(Bx, By)
2: for v in {1, 2} do
3: aggregation cells listAggrv = {}

4: aggregation representative list Repv = {}

5: set all active nodev variables and all integral cellsv active
6: row weight sum wi ←

∑
j Bv

i j
7: Sort w in a decreasing order
8: for w j in w do
9: if nodev

j is active then
10: Repv ← Repv ∪ { j}
11: Aggrv ← Aggrv ∪ {c for all cellc adjacent to nodev

j}

12: deactivate all cells adjacent to nodev
j

13: deactivate all nodes adjacent to nodev
j

14: end if
15: end for . Now every ghost node belongs to at least one aggregation
16: for all boundary cellvi do
17: if celli is inactive then
18: Find the closest aggregation of cellvi Aggrv

k
19: Aggrv

k ← Aggrv
k ∪ {i}

20: end if
21: end for . Pickup orphans
22: end for
23: end procedure

(a) (b) (c)

Figure 6: Cell aggregations for x nodes with representative nodes denoted by their number. a) x component boundary
cells and the first two representative nodes and the incident x− cells of each representative node; b) all representative
nodes for x component cells and their incident cells, orphan cells will be attached to their nearest neighbor cells; c)
final cell aggregations together with their representative nodes for the x grid.

presence of highly irregular domains or nearly incompressible materials. The sections that follow will detail the key
components of our multigrid solver: a hierarchy of discretizations, a smoothing procedure, and appropriate transfer
operators (i.e. restriction and prolongation) between levels of the hierarchy. Although our design decisions include
certain common practices, these components have been significantly customized to fit the needs of the specific dis-
cretization being followed, and facilitate both convergence and computational efficiency even near the incompressible
limit.
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Algorithm 3 Multigrid defect correction

1: procedure V-Cycle(L̂h,ûh, f̂ h
)

2: if problem at low resolution and easy to solve then
3: ûh ← (L̂h)−1 f̂ h

and return;
4: end if
5: PreRelaxation(L̂h,ûh, f̂ h

)
6: Restriction: f̂ 2h

← R( f̂ h
− L̂hûh)

7: V-Cycle(L̂2h, ˆu2h, f̂ 2h
)

8: Prolongation: ûh ← ûh + Pû2h

9: PostRelaxation(L̂h,ûh, f̂ h
)

10: end procedure

5.1. Discretization hierarchy

We consider a hierarchy of resolutions, each corresponding to a discretization on a progressively larger grid size.
In particular, we employ a grid step of h on the finest level of the hierarchy (numbered as level zero), followed by
discretizations with grid step sizes of 2h, 4h, . . . , 2Lh, for a total of L + 1 hierarchy levels. In detail, the hierarchy is
constructed as follows:

• At every level of the hierarchy, say the l-th one, we define the background grids Gx
2lh,G

y
2lh,G

p
2lh corresponding

to the x-, y-, and p-variables respectively.

• A level set function is computed over the respective doubly-refined subgrids Gφh ,G
φ
2h,G

φ
4h, . . . for each level.

Obviously, coarser levels may fail to resolve certain high-frequency features of the domain geometry, leading
to possible discrepancies between the discrete systems at various levels, which will be further addressed in our
discussion of the smoother and transfer operators.

• Using the level set values associated with a given grid, we generate the discrete domains T x
2lh,T

y
2lh,T

p
2lh, and

allocate the unknown arrays u2lh and p2lh as well as the right-hand sides f 2lh and f 2lh
p of the respective equa-

tions. The discrete operators L2lh
u , G2lh and D2lh

p of the system (20) are likewise defined on the discrete domain
associated with the l-th level of the hierarchy, following the same process detailed in section 3.1. Note that,
although at the finest level of the hierarchy we have used f h

p = 0 by virtue of our discretization, the right hand
side f 2lh

p for coarser levels (l ≥ 1) will generally be nonzero in the Multigrid Correction Scheme (see Algorithm
3).

From this point on, we will simply use h instead of 2lh to denote the grid spacing at any specific level of the
multigrid hierarchy, whenever this does not incur any ambiguity. When there is a Dirichlet boundary condition, a
constraint matrix Bh is defined for each level, enforcing the integral of x or y displacement components along the
discretized domain boundary ∂Ωh of the current level and within each cell aggregation (each cell group with the same
color in Figure 6) precomputed on the same level, to be the same as that of the Dirichlet values for the corresponding
displacement component. Each of these constraints (or cell aggregations) corresponds to one Lagrange multiplier. In
the fundamental basis method, we eliminate these multipliers by solving for the fundamental basis coefficients vh in
ch + Zhvh. By definition of ch (29) and Zh (28), there is a one-to-one mapping between vh components and active x
and y degrees of freedom that are not aggregation representatives. Thus, the reduced system (30) is defined on these
degrees of freedom only. Due to the fact that the reconstructed uh = ch+Zhvh satisfies the constraints automatically, we
do not need to restrict any residual for the constraint system, i.e. on coarser levels, the Dirichlet boundary constraint
values are always zero. Also, λh do not need to be solved, therefore, we do not need to record their values, nor
prolongate their corrections. When we restrict the residuals of the governing equation, i.e. rh = f h

− Lhuh − BhT
λh,

we restrict zero for all equations that will need a λh value. In other words, we restrict zero residuals from equations
involving boundary nodes, i.e. the nodes in Figure 6 cells. Although omitting these equations from the inter-grid
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transfers is a deviation from conventional practice, we compensate by moderately increasing the smoothing effort in
the boundary band, effectively driving the residuals closer to zero (which is the value that is actually restricted). This
approach avoids the use of specialized, elaborate transfer operators between the λ variables, which are not in perfect
correspondence across levels due to the potentially different aggregations employed at each level. Thus, a single level
discretization is defined for all levels with powers of 2 resolutions.

5.2. Relaxation

The interior equations are uniform and have the same properties, while near the boundary, the equations have very
different stencils. In order to design a stable and efficient relaxation while keeping the computational cost low, we
define two (overlapping) sets of equations, and apply an appropriate relaxation scheme to each one. The two sets
correspond to equations in the interior of the discrete domain, and equations near the boundary, respectively. We
define the extent of the interior region by excluding a 5 × 5 block of cells, centered around any cell that is either
entirely exterior to the domain, or intersects a Dirichlet boundary. See Figure 7, right, for an example using a single
cell block. The interior region is relaxed with the distributive process detailed in section 5.2.1.

We then define the boundary band to be the union of all 7×7 blocks of cells centered at each cell that intersects the
Dirichlet boundary and then removing all the non-active cells (i.e. cells that are completely exterior to the domain).
This defines the set of equations to which we will apply a boundary relaxation. In each single level relaxation, we first
sweep over the boundary band, and apply a few iterations of boundary relaxations, then apply one iteration of interior
relaxation followed by another few iterations of boundary relaxations. In Figure 7, left, we show an example of the
cells and equations that end up in a boundary region calculated with the method described above, but using a 3 × 3
box rather than the 7 × 7 box used in our simulations.

(a) An example of boundary band pressure cells and boundary
variables using a 3 × 3 box centered at each cell that contains
the boundary.

(b) An example of distributive pressure cells and variables re-
laxed using distributive relaxation. The region is defined by
excluding a single cell box centered at each cell containing the
boundary.

Figure 7: Boundary band and distributive region.

The efficiency of a multigrid method is closely related to the smoothing efficiency of a single level relaxation. With
Poisson’s equation, simple Jacobi or Gauss-Seidel will typically suffice as an efficient smoother. These techniques
efficiently reduce the high-frequency component of the error and make it possible for a coarse grid to provide a
meaningful correction to a finer grid. This property is fundamentally important for the efficiency of the geometrically
hierarchical approach to solving the equations. Unfortunately, the equations of nearly incompressible linear elasticity
with augmented pressure require more care than the comparably simplistic discrete Poisson equation. Although
our system is not symmetric positive definite, we can modify the equations to a more convenient form as in [1] to
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design a proper geometric multigrid smoother. We confirm that a change of variables leads to an approximate block
triangularization of the discrete system with each diagonal block being a symmetric semi-definite discretization of the
Laplacian. Our smoother is then constructed to be an emulation of the Gauss-Seidel relaxation applied on each block.

5.2.1. Approximated distributive relaxation
We follow the idea in [1] and develop a distributive relaxation. At the continuous PDE level, we apply a change

of variable: (
u
p

)
=

(
I −∇

∇T −2∆

) (
v
q

)
or û = M̂v̂ (31)

and substitute into (7) to achieve a new system(
µ∆I 0

µ(1 +
µ
λ
)∇T −µ(1 +

2µ
λ

)∆

) (
v
q

)
=

(
f
0

)
or L̂M̂v̂ = f̂ (32)

for some auxiliary variable v̂ = (v, q). The derived PDE system is a block lower triangular system, and can be solved
in a forward substitution process, i.e. first solve the v equations, and then freeze the v variables in the second equation
and solve the q equation. Moreover, with a certain choice of discretizations, the same triangulation can be realized on
the discretized system, i.e. L̂hM̂h is also a block lower triangular linear system [1].

Due to the fact that each of the diagonal blocks of the discrete auxiliary system is a discretization of the Laplacian
operator, we can relax the whole system using a Gauss-Seidel relaxation on each component of the v variables followed
by another Gauss-Seidel relaxation on the q variables and achieve the same smoothing efficiency as that of the Gauss-
Seidel relaxation applied on Poisson’s equation. At any approximation of v and q, the approximate solutions to the
augmented system can be reconstructed using (31).

In practice, we do not need to explicitly construct v̂. In a Gauss-Seidel relaxation applied on v̂, we iteratively solve
for local corrections v̂i ← v̂i + δei, such that the local residual ( f̂ − L̂M̂v̂)i is zeroed out. Therefore, δ = (L̂M̂)−1

ii r̂i.
Such corrections invoke local corrections to û in a distributive pattern, i.e. ûi ← ûi +δM̂ei, thus defines the distributive
relaxation scheme in Algorithm 4.

Algorithm 4 Distributive Smoothing

1: procedure DistributiveSmoothing(L̂h,M̂h,ûh, f̂ h
)

2: for v in {u1, u2, p} do . Must iterate on u1 and u2 before p
3: for i in Lattice[v] do . i is an equation index
4: r ← f̂ h

i − L̂h
i · û

h . L̂h
i is the i-th row of L̂h

5: δ← r/(L̂hM̂h)ii . (L̂hM̂h)ii is a precomputed constant for each component
6: ûh += δmT

i . mi is the i-th row of M̂h

7: end for
8: end for
9: end procedure

For a staggered finite difference discretization, the triangularization of the discretized system can be achieved by
discretizing the change of variable operator using centered differences for the gradient and divergence operators and
a five point stencil for the Laplacian operator as shown in [1]. However, when we use a finite element discretization,
there is no discrete change of variables with same sparsity that leads to an exact triangularization. Instead, we dis-

cretize the gradient operator in (31) using the stencils derived in a finite element method, i.e. ∇h = 1
µh2 GhT

=

(
Dh

x
Dh

y

)
mapping from p variables to x and y variables with the locations illustrated in Figure 4-right and the stencils being:

Dh
x =

1
h

 −1/8 1/8
−3/4 3/4
−1/8 1/8

 Dh
y =

1
h

]
1/8 3/4 1/8
−1/8 −3/4 −1/8

[
. (33)
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Similarly, the Laplacian operator in (31) is discretized from a standard piecewise bi-linear finite element discretization.

Mh
p =

1
h2

 1/3 1/3 1/3
1/3 −8/3 1/3
1/3 1/3 1/3

 (34)

Although, the linear system L̂hM̂h is not block triangular, our numerical results show that the derived distributive
relaxation is able to reduce the high-frequency error components efficiently. Results of using this relaxation scheme
will be shown in section 6.

5.2.2. Higher order defect correction
We also adopt the idea of higher order defect correction, which will allow us to develop a less expensive distributive

relaxation. In a defect correction scheme for an arbitrary linear system Lu = f , we solve for the correction δu =

uexact − u, which satisfies an equation Lδu = f − Lu. In practice, we approximate the equation with another system
Lapproxδu = f − Lu that is easier to solve. For example, in a multigrid correction scheme, a coarse grid system is used
as the approximated equation for solving the correction at the fine grid resolution, i.e. L = Lfine, Lapprox = Lcoarse. In the
high order defect correction scheme, a lower order discretization is employed as the approximated system for solving
a higher order discretization correction. In our case, the finite difference discretization is a lower order system, and the
finite element discretization is a high order system, i.e. L = Lfem, Lapprox = Lfdm. In other words, we consider solving
the following correction equation:

L̂ f d,hδû = f̂ − L̂ f e,hû.

In our case, the lower order operator L̂ f d,h is the staggered finite difference scheme detailed in [1]. Note that this
operator is only lower order near the boundary, yet second order in the interior; however, we still use this finite
difference scheme as the lower order operator in the defect correction process, even when we only focus on the
domain interior. One of the benefits we obtain from such an approximation is that we can use the existing distributive
relaxation with the exact triangulation of the discretized system (32). To be specific, let us rewrite the finite difference
system as

L̂ f d,hû =

 L f d,h
u G f d,hT

G f d,h D f d,h
p

 ( u f d,h

pf d,h

)
=

(
f f d,h

0

)
(35)

and rewrite the finite element system scaled by 1/h2 to match the scaling of the differential equation

1
h2 L̂ f e,hû =

1
h2

 L f e,h
u G f e,hT

G f e,h D f e,h
p

 ( u f e,h

pf e,h

)
=

1
h2

(
f f e,h

0

)
(36)

In a high order defect correction scheme employing a finite difference discretization, we solve for a correction δû =

M̂ f d,hδv̂ to locally satisfy

L̂ f d,hM̂ f d,hδv̂ =
1
h2 ( f̂ f e,h

− L̂ f e,hûcurrent)

This derives a sparser distributive relaxation, shown in Algorithm 5.
The previous two types of distributive relaxation are not applicable for variables near the domain boundary. In

fact, near the boundary, some of the variables in the distribution stencil may not exist. We follow the idea in [1], and
temporarily build an unaugmented system in the boundary band (see Figure 7, left).

5.3. Boundary relaxation

Near the domain boundary, the previous distributive relaxation is not well defined; a special relaxation is required.
In the Neumann boundary condition case, we eliminate p from the augmented system (20) by left multiplying the
equation with

Û =

(
I −GT D−1

p
0 I

)
.
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Algorithm 5 High Order Defect Correction Distributive Smoothing

1: procedure HighOrderDefectCorrectionDistributiveSmoothing(L̂ f d,M̂ f d,L̂ f e,M̂ f e,û, f̂ f e,h
)

2: for v in {u1, u2, p} do . Must iterate on u1 and u2 before p
3: for i in Lattice[v] do . i is an equation index
4: r ← f̂ f e,h

i − L̂ f e
i · û . L̂ f e

i is the i-th row of L̂ f e

5: δ← r/(L̂ f dM̂ f d)ii . (L̂ f dM̂ f d)ii is a precomputed constant for each component
6: û += δmT

i . mi is the i-th row of M̂ f d

7: end for
8: end for
9: end procedure

Therefore,

ÛL̂û =

(
Lu −GT D−1

p G 0
G Dp

) (
u
p

)
= Û f̂ . (37)

In the first equation for u, the equation is symmetric and positive definite, and hence can be solved again using
Gauss-Seidel relaxation. This unaugmented system is a consistent discretization to the original PDE (7). Although
Gauss-Seidel relaxation is not an efficient smoother for the unaugmented system if defined everywhere, for the purpose
of boundary relaxation, we only build the temporary unaugmented system and relax it within a very narrow boundary
band as demonstrated in Figure 7, and temporarily freeze the interior variables. The solution is strongly restricted by
nearby interior values, therefore the Gauss-Seidel relaxation is still efficient and stable. Typically, with about 5 to 10
sweeps of boundary relaxation before and after each interior relaxation sweep, the boundary residual is reduced to as
small as the interior residual. Once we relaxed u well enough, we freeze u and substitute into the second equation in
(37) to resolve pressure variables.

5.4. Boundary relaxation for the reduced system in Dirichlet boundary condition case

In the Dirichlet boundary condition case, the boundary system (27) is a KKT system, which is indefinite, and
cannot be resolved using Gauss-Seidel relaxations. Alternative approaches such as Kaczmarz relaxation or box relax-
ation may be efficient smoothers, however, their computational cost is much more expensive. Instead, we follow the
fundamental basis method, to solve vh from the reduced system (30), and reconstruct the solution of the KKT system
(27) using uh = ch + Zhvh. Since Lh is symmetric positive definite, ZhT LhZh is also symmetric positive definite, and
hence can be solved using Gauss-Seidel relaxation (see Algorithm 6).

In practice, a Gauss-Seidel iteration on (30) iteratively solves for a correction on each single degree of freedom by
solving the following scalar equation

eT
i Lh

r (vh + δei) = eT
i ZhT

( f h
− Lhch), (38)

where Lh
r = ZhT LhZh i.e.

(Lh
r )iiδ = eT

i ZhT
( f h
− Lhch − LhZhvh) = eT

i ZhT
( f h
− Lhuh) (39)

and then applies the correction: vh ← vh + δei. Equivalently, uh is updated as uh ← uh + δZhei. Therefore we can
equivalently solve for a correction on u to emulate the Gauss-Seidel iteration on vh (see Algorithm 7).

5.5. Coarsening

In a geometric multigrid method, we define a discretization on each level. On the interior of the region, we
restrict residuals from the fine grid to coarse grid by applying a restriction operator R for each component defined on
the staggered grids with stencils illustrated in Figure 9 . We consider two types of prolongation stencils. First, we
consider prolongation Plo = 4RT . Second, we consider piecewise bi-linear interpolation for u in combination with the
same pressure prolongation as in Plo, which we donate as Phi.
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Algorithm 6 Dirichlet boundary relaxation - vh

1: vh ← 0
2: for i = 1 to m do
3: δ← eT

i ZhT ( f h
− Lhch − LhZhvh)/(Lh)ii

4: vh += δei

5: end for

Algorithm 7 Dirichlet boundary relaxation - uh

1: uh ← ch

2: for i = 1 to m do
3: δ← eT

i ZhT ( f h
− Lhuh)/(Lh)ii

4: uh += δZhei

5: end for

(a) Fine grid active cells (b) Coarse grid active cells, overlaid with the fine active
cells demonstrated using dashed lines

Figure 8: Coarsening of grid variables

However, on the boundary, there is no guarantee that all dependencies of the coarse grid variable restriction
stencils are active fine grid degrees of freedom. Therefore, we truncate our restriction stencils to the active degrees
of freedom, which is equivalent to restricting zero residuals from inactive regions. Also, when a Dirichlet boundary
condition presents, we cannot compute the residuals rh = f h

−Lhuh −BhT
λh when a λ value is involved. In this case,

we apply a boundary relaxation strong enough such that the boundary residual is smaller than interior relaxations, and
restrict zero boundary residual for these equations.

The coarse grid constraint system right hand side should have been computed from the restriction of the fine grid
constraint system residual. However, due to the fact that our solutions uh

p = ch + Zhvh always satisfy the boundary
constraints exactly, the coarse grid Dirichlet boundary condition is always zero.

Also, prolongation is implemented in a distributive way, i.e. we iterate over the active coarse grid corrections,
and distribute their values to all active fine level degrees of freedom. Near the domain boundary this is equivalent to
prolongating a zero correction from exterior coarse grid locations, which is reasonable. We notice that this prolonga-
tion may lead to a solution away from the fundamental basis solution. Therefore, a projection onto the solution space
needs to be applied after the prolongation step. The projected solution is uh

p = ch + Zhvh, for some vh, and according
to the definition of Zh and ch in (28) and (29), we have vh = Quh, where Q projects a solution vector to a sub-vector
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Figure 9: Restriction operator stencils.

by eliminating the degrees of freedom that correspond to aggregation representative nodes. Therefore, the projected
solution is uh

p = ch + ZhQuh.
Now that we have covered all the components of a multigrid method, we will next look at the results we are able

to obtain using these methods.

6. Numerical examples

We investigate two aspects of our algorithm: discretization error and multigrid efficiency. In this section, we apply
our method on various domains with Neumann or Dirichlet boundary conditions and with a wide range of Poisson’s
ratios. We considered three deformations defined on three geometric domains:

1. Keyhole domain A Keyhole domain is enclosed by a smooth curve connecting 8 tangential circles with centers

c1 = (0.25, 0.25); c2 = (0.75, 0.25);
c3 = (0.25, 0.75); c4 = (0.75, 0.75);

s1 = (0.5, 0.6875); s2 = (0.5, 0.3125);
s3 = (0.3125, 0.5); s4 = (0.6875, 0.5);

and radius 0.2 for the first 4 circles and rs =

√
17
4
− 0.2 for the last 4 circles. The radius rs is chosen such

that the circle curves are tangential and hence generate a smooth boundary. The keyhole domain can also be
represented by the zero levelset of the following function:

ϕ(x) = max
{

min
{
dist(x, 0, r0),min

i
{dist(x, ci, 0.2)}

}
,−min

i
{dist(x, si, rs)}

}
where dist(x, x0, r) = |x − x0| − r, and r0 =

∣∣∣∣ 0.2
√

17
(4, 1) − (0.25, 0.25)

∣∣∣∣.
A constant divergence deformation is considered, giving the exact boundary conditions and the exact solution
for the purpose of error computation.

φ1(x, y) = 2x +
1
2

cos πx sin πy (40)

φ2(x, y) = 2y −
1
2

sin πx cos πy (41)

2. Flower domain A flower-shaped domain with inner radius 0.2, outer radius 0.4 is considered with a levelset
function:

ϕ(x) = dist(x, 0.5, 0.3 + 0.1 cos 5θ)
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Figure 10: Left: undeformed keyhole domain; right: deformed keyhole domain

where θ is the argument of (x, y). A deformation with spatially varying divergence is considered as an exact
solution.

φ1(x, y) =
2x
√
π

cos
π

2
y (42)

φ2(x, y) =
2x
√
π

sin
π

2
y (43)

Figure 11: Left: undeformed flower domain; right: deformed flower domain

3. Spiral domain We consider a spiral shaped domain, defined by the zero levelset of

ϕ(x) = r(y) − (0.33 + 0.08 cos 5θ(y)
1
3 )

where y is x − (0.5, 0.5) rotated around (0.5, 0.5) by θ = 14(2r(x))
1
6 and the deformation is given by:

φ1(x, y) =

(
1
2

x +
1
2

)
cos

(
π

6
+

2
3
πy

)
(44)

φ2(x, y) =

(
1
2

x +
1
2

)
sin

(
π

6
+

2
3
πy

)
(45)
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Figure 12: Left: undeformed spiral domain, right: deformed spiral domain

6.1. Discretization error
All our testing domains are embedded in a [0, 1]2 domain, and we discretize this square domain with a regular grid

of different resolutions ranging from 32 to 1024 in each direction. We plotted log2 |uexact − u|∞ versus log2 resolution
and estimated the solution accuracy order by fitting the data with a linear function. We remove the Neumann boundary
condition null space by enforcing a non-embedded Dirichlet condition on all degrees of freedom within the domain
[7/16, 9/16]2. From the plotted error convergence behavior, we observe a second-order convergence for all three types
of domains (see Figures 13, 14, and 15) for both Neumann and Dirichlet boundary conditions and for a wide range of
material parameters including near-incompressible materials. We notice that the order of accuracy is slightly smaller
for domains with complicated boundaries. An important source of the inaccuracy is introduced by the inconsistent
domain discretization at different resolutions.

6.2. Multigrid efficiency
We also investigated the efficiency of the multigrid methods. First, we consider a periodic boundary condition

problem defined on [0, 1]2 and with the exact solution given by

φ1(x, y) = sin 2πx + cos 2πy

φ2(x, y) = cos 2πx + sin 2πy.

Although periodic boundary conditions will not appear in practical elasticity problems, we consider the periodic
boundary condition problem to evaluate the multigrid solver while avoiding issues that may arise with boundary
relaxation. We first fix the problem resolution to 128 × 128 and apply finite element distributive relaxation and the
distributive relaxation for the finite difference defect correction problem as the interior relaxations. We also apply the
bilinear prolongation and a prolongation with P = 4RT . While low incompressibility problems generate convergence
rates no larger than 0.3 for a multigrid V-(1,1) cycle with all different prolongation and distribution options, we focus
on the the harder high-incompressible case with Poisson’s ratio being 0.49, and investigate both V-(1,1) cycle and W-
(1,1) cycle convergence. As shown in Table 1, both finite element distributive relaxation and the finite difference defect
correction scheme generate convergence rates less than 0.5 with a multigrid V-(1,1) cycle. Although finite difference
defect correction distributive relaxation generates slower convergence than finite element distributive relaxation for the
V-(1,1) cycle, with the help of a bilinear interpolation or W-(1,1) cycle, we are able to generate a better convergence
rate of 0.23.

We further investigate the multigrid convergence rate for various resolutions by sticking to one scheme which uses
finite element distribution, low order prolongation and a V-(1,1) cycle, and plot the convergence rate for problems
discretized with resolutions from 32 to 1024 (see Figure 16). A consistent multigrid convergence rate is observed
under refinement.
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boundary condition distribution multigrid cycle Phi Plo

Periodic FD V-(1,1) 0.24 0.42
FD W-(1,1) 0.23 0.25
FE V-(1,1) 0.13 0.24
FE W-(1,1) 0.13 0.30

Dirichlet FD V-(1,1) 0.72 0.72
FD W-(1,1) 0.72 0.72
FE V-(1,1) 0.37 0.36
FE W-(1,1) 0.42 0.42

Neumann FD V-(1,1) 0.70 0.70
FD W-(1,1) 0.68 0.68
FE V-(1,1) 0.50 0.50
FE W-(1,1) 0.35 0.35

Table 1: Multigrid asymptotic convergence rates for different combinations of boundary conditions, interpolation and
distributive relaxation on the flower domain (Poisson’s ratio=0.49, resolution=128×128). For optional prolongations,
Phi is bilinear interpolation and Plo is for P = 4RT . For the optional distributions, FE is the distribution matrix
discretized with the bilinear finite element method, and FD is using defect correction by employing finite difference
distributive relaxation.

While all schemes give a nice convergence rate in periodic cases, the convergence rate with Neumann boundary
conditions and Dirichlet boundary conditions varies. In non-trivial boundary condition cases, the convergence rate
is mainly restricted by the efficiency of the boundary relaxation. Therefore, the convergence rate of a V-(1,1) cycle
and a W-(1,1) cycle are very similar. Also different prolongation schemes generate very similar convergence rates
(see Table 1 for the convergence rate of all algorithm options for the flower domain problem at a fixed resolution of
128×128). The difference between using a finite element distributive relaxation and a finite difference defect correction
distributive relaxation reflects the efficiency of the whole smoother in combination with the boundary relaxations.

We further investigate the convergence rate under refinement, due to the fact that different prolongation schemes
and multigrid cycles generate similar convergence rates. We only plot the asymptotic convergence rate of a V-(1,1)
cycle with P = 4RT and using finite element distributive relaxation in the interior. For both the Dirichlet and Neu-
mann boundary condition problem, we plot the asymptotic convergence rate for resolutions from 32 to 1024 and the
residual reduction at each iteration for representative resolution numbers that are powers of 2. We observed consistent
convergence rate at all resolutions (see Figure 17 and Figure 18).

7. Conclusion and future work

We developed a second-order mixed finite element discretization for linear elasticity of all material parameters
from compressible to highly incompressible. We developed a multigrid method for the linear system induced by the
discretization. By applying approximated distributive relaxation, we can achieve a fast and parameter-independent
convergence rate when no boundary conditions are present. With specified boundary conditions defined on a variety
of domains, we also demonstrated that the multigrid method can maintain a good convergence rate with only a small
number of boundary relaxations. However, the optimum convergence demonstrated in the periodic boundary condition
case was not achieved. In the future, we are interested in investigating a more efficient boundary smoother that avoids
unaugmentation as well as a continuous extension to Stokes equations.
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Figure 13: Order of accuracy, ρ, for keyhole domain; top: Neumann boundary condition; bottom: Dirichlet boundary
condition; left: Poisson’s ratio=0.3; right: Poisson’s ratio=0.49; square marker: x component; circle marker: y
component.
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Figure 14: Order of accuracy, ρ, for flower domain. Top: Neumann boundary condition, bottom: Dirichlet boundary
condition; left: Poisson’s ratio=0.3; right: Poisson’s ratio=0.49; square marker: x component; circle marker: y
component.
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Figure 15: Order of accuracy, ρ, for spiral domain. Top: Neumann boundary condition; bottom: Dirichlet boundary
condition; left: Poisson’s ratio=0.3; right: Poisson’s ratio=0.49; square marker: x component; circle marker: y
component.
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Figure 16: Multigrid V-(1,1) cycle convergence under refinement (Poisson’s ratio = 0.49, periodic boundary condi-
tions, finite element distribution).

Figure 17: Multigrid V-(1,1) cycle convergence rate at resolutions from 32 to 1024 (Poisson’s ratio = 0.49). Left:
Dirichlet boundary condition; right: Neumann boundary condition.

28



Figure 18: Multigrid V-(1,1) cycle convergence under refinement (Poisson’s ratio = 0.49). Left: Dirichlet boundary
condition; right: Neumann boundary condition.
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