SOLUTION 16: $$ \displaystyle{ \lim_{x \to \infty} \ { e^x + {2/x} \over e^x + {5/x } } } = \displaystyle{ `` \ e^{\infty} + 2/ \infty \ " \over e^{\infty} + 5/ \infty }
= \displaystyle{ `` \ \infty + 0 \ " \over \infty + 0 }
= \displaystyle{ `` \ \infty \ " \over \infty } $$
(Apply Theorem 2. Differentiate the top and the bottom.)
$$ \displaystyle{ \lim_{x \to \infty} \ { e^x - 2/x^2 \over e^x - 5/x^2 } } = \displaystyle{ `` \ \infty - 0 \ " \over \infty - 0 }
= \displaystyle{ `` \ \infty \ " \over \infty } $$
(Applying Theorem 2 for l'Hopital's Rule again will get us nowhere. Stop and think. Go back to the original problem and rewrite it.)
$$ \displaystyle{ \lim_{x \to \infty} \ { e^x + {2/x} \over e^x + {5/x } } } = \displaystyle{ \lim_{x \to \infty} \ { { e^x + {2/x} \over e^x + {5/x } } \cdot { x \over x } } } $$
$$ = \displaystyle{ \lim_{x \to \infty} \ { xe^x + 2 \over xe^x + 5 } }
= \displaystyle{ `` \ \infty \cdot \infty + 2 \ " \over \infty \cdot \infty + 5 }
= \displaystyle{ `` \ \infty + 2 \ " \over \infty + 5 }
= \displaystyle{ `` \ \infty \ " \over \infty } $$
(Apply Theorem 2 for l'Hopital's Rule. Differentiate the top and bottom using the product rule.)
$$ = \displaystyle{ \lim_{x \to \infty} \ { xe^x + (1)e^x + 0 \over xe^x + (1)e^x + 0} } $$
$$ = \displaystyle{ \lim_{x \to \infty} \ { 1 } } $$
$$ = \displaystyle{ { 1 } } $$
Click HERE to return to the list of problems.