SOLUTION 23: $$ \displaystyle{ \lim_{x \to 0} \ (1 - x)^{1/x} } 
=  \displaystyle{ `` \ (1-0)^{ 1/0^{\pm}   } \ "  } 
=  \displaystyle{ `` \ (1-0)^{ \ \pm \infty  } \ "  }  
=  \displaystyle{ `` \ 1^{ \ \pm \infty  } \ "  }  $$
(Rewrite the problem to circumvent this indeterminate form. Recall that $ \displaystyle{ e^{\ln z} = z }. $)
$$ \displaystyle{ \lim_{x \to 0} \ (1 - x)^{1/x} }  = \displaystyle{ \lim_{x \to 0 } \ e^{ \  \displaystyle \ln  (1 - x)^{1/x} } } $$ 
$$ = \displaystyle{ \lim_{x \to 0  } \ e^{ \ \displaystyle {1/x} \cdot \ln (1-x) } } $$
$$ = \displaystyle{  e^{ \ \displaystyle{ \lim_{x \to 0  } \ {\ln (1-x) \over x }}}}  
=  \displaystyle{  \ e^ { \ \displaystyle{ `` \  { (\ln 1)/0} \ "  } } }  =  \displaystyle{  \ e^ { \ \displaystyle{ `` \  { 0/0}\ "  } } } $$
(Apply Theorem 1 for l'Hopital's Rule.)
$$ = \displaystyle{  \ e^ { \ \displaystyle{ \lim_{x \to 0} \ 
{ { 1 \over 1-x } \cdot (-1) \over {1} } } } } $$
$$ = \displaystyle{  \ e^ { \ \displaystyle{ { { -1/(1-0) } } } } } $$
$$ = \displaystyle{  \ e^ { \ \displaystyle{-1} } } $$
$$ = \displaystyle{ 1 \over e } $$
Click  HERE  to return to the list of problems.