Solutions to Limits as x Approaches a Constant

SOLUTIONS TO LIMITS OF FUNCTIONS AS X APPROACHES A CONSTANT



SOLUTION 1 :

tex2html_wrap_inline555 .

Click HERE to return to the list of problems.




SOLUTION 2 :

tex2html_wrap_inline559

(Circumvent the indeterminate form by factoring both the numerator and denominator.)

tex2html_wrap_inline561

(Divide out the factors x - 2 , the factors which are causing the indeterminate form tex2html_wrap_inline537 . Now the limit can be computed. )

tex2html_wrap_inline567

tex2html_wrap_inline569

tex2html_wrap_inline571

Click HERE to return to the list of problems.




SOLUTION 3 :

tex2html_wrap_inline575

(Circumvent the indeterminate form by factoring both the numerator and denominator.)

tex2html_wrap_inline577

tex2html_wrap_inline579

(Divide out the factors x - 3 , the factors which are causing the indeterminate form tex2html_wrap_inline537 . Now the limit can be computed. )

tex2html_wrap_inline585

tex2html_wrap_inline587

tex2html_wrap_inline589 .

Click HERE to return to the list of problems.




SOLUTION 4 :

tex2html_wrap_inline593

(Algebraically simplify the fractions in the numerator using a common denominator.)

tex2html_wrap_inline595

(Division by tex2html_wrap_inline597 is the same as multiplication by tex2html_wrap_inline599 .)

tex2html_wrap_inline601

(Factor the denominator . Recall that tex2html_wrap_inline603 .)

tex2html_wrap_inline605

(Divide out the factors x + 2 , the factors which are causing the indeterminate form tex2html_wrap_inline537 . Now the limit can be computed. )

tex2html_wrap_inline611

tex2html_wrap_inline613

tex2html_wrap_inline615 .

Click HERE to return to the list of problems.




SOLUTION 5 :

tex2html_wrap_inline619

(Eliminate the square root term by multiplying by the conjugate of the numerator over itself. Recall that

tex2html_wrap_inline621 . )

tex2html_wrap_inline623

tex2html_wrap_inline625

tex2html_wrap_inline627

tex2html_wrap_inline629

(Divide out the factors x - 4 , the factors which are causing the indeterminate form tex2html_wrap_inline537 . Now the limit can be computed. )

tex2html_wrap_inline635

tex2html_wrap_inline637

tex2html_wrap_inline639 .

Click HERE to return to the list of problems.




SOLUTION 6 :

tex2html_wrap_inline643

(It may appear that multiplying by the conjugate of the numerator over itself is a reasonable next step.

It's a good idea, but doesn't work. Instead, write x - 27 as the difference of cubes and recall that

tex2html_wrap_inline647 .)

tex2html_wrap_inline649

tex2html_wrap_inline651

(Divide out the factors tex2html_wrap_inline653 , the factors which are causing the indeterminate form tex2html_wrap_inline537 . Now the limit can be computed. )

tex2html_wrap_inline657

tex2html_wrap_inline659

= 27 .

Click HERE to return to the list of problems.




SOLUTION 7 :

tex2html_wrap_inline665

(Multiplying by conjugates won't work for this challenging problem. Instead, recall that

tex2html_wrap_inline647 and tex2html_wrap_inline669 , and note that tex2html_wrap_inline671 and tex2html_wrap_inline673 . This should help explain the next few mysterious steps.)

tex2html_wrap_inline675

tex2html_wrap_inline677

tex2html_wrap_inline679

tex2html_wrap_inline681

(Divide out the factors x - 1 , the factors which are causing the indeterminate form tex2html_wrap_inline537 . Now the limit can be computed. )

tex2html_wrap_inline687

tex2html_wrap_inline689

tex2html_wrap_inline691 .

Click HERE to return to the list of problems.




SOLUTION 8 :

tex2html_wrap_inline695

(If you wrote that tex2html_wrap_inline697 , you are incorrect. Instead, multiply and divide by 5.)

tex2html_wrap_inline699

tex2html_wrap_inline701

(Use the well-known fact that tex2html_wrap_inline703 .)

tex2html_wrap_inline705

tex2html_wrap_inline707 .

Click HERE to return to the list of problems.




SOLUTION 9 :

tex2html_wrap_inline711

(Recall the trigonometry identity tex2html_wrap_inline713 .)

tex2html_wrap_inline715

tex2html_wrap_inline717

tex2html_wrap_inline719

(The numerator is the difference of squares. Factor it.)

tex2html_wrap_inline721

(Divide out the factors tex2html_wrap_inline723 , the factors which are causing the indeterminate form tex2html_wrap_inline537 . Now the limit can be computed. )

tex2html_wrap_inline727

tex2html_wrap_inline729

tex2html_wrap_inline731 .

Click HERE to return to the list of problems.




SOLUTION 10 :

tex2html_wrap_inline735

(Factor x from the numerator and denominator, then divide these factors out.)

tex2html_wrap_inline739

tex2html_wrap_inline741

(The numerator approaches -7 and the denominator is a positve quantity approaching 0 .)

tex2html_wrap_inline747

(This is NOT an indeterminate form. The answer follows.)

tex2html_wrap_inline749 .

(Thus, the limit does not exist.)

Click HERE to return to the list of problems.




SOLUTION 11 :

tex2html_wrap_inline755

(The numerator approaches -3 and the denominator is a negative quantity which approaches 0 as x

approaches 0 .)

tex2html_wrap_inline757

(This is NOT an indeterminate form. The answer follows.)

tex2html_wrap_inline759 .

(Thus, the limit does not exist.)

Click HERE to return to the list of problems.




SOLUTION 12 :

tex2html_wrap_inline763

(Recall that tex2html_wrap_inline647 . )

tex2html_wrap_inline767

(Divide out the factors x - 1 , the factors which are causing the indeterminate form tex2html_wrap_inline537 . Now the limit can be computed. )

tex2html_wrap_inline773 .

(The numerator approaches 3 and the denominator approaches 0 as x approaches 1 . However, the quantity

in the denominator is sometimes negative and sometimes positive. Thus, the correct answer is NEITHER

tex2html_wrap_inline779 NOR tex2html_wrap_inline781 . The correct answer follows.)

The limit does not exist.

Click HERE to return to the list of problems.




SOLUTION 13 :

tex2html_wrap_inline785

(Make the replacement tex2html_wrap_inline787 so that tex2html_wrap_inline789 . Note that as x approaches tex2html_wrap_inline793 , h approaches 0 . )

tex2html_wrap_inline799

(Recall the well-known, but seldom-used, trigonometry identity tex2html_wrap_inline801 .)

tex2html_wrap_inline803

tex2html_wrap_inline805

tex2html_wrap_inline807

tex2html_wrap_inline809

(Recall the well-known trigonometry identity tex2html_wrap_inline811 . )

tex2html_wrap_inline813

tex2html_wrap_inline815

(Recall that tex2html_wrap_inline817 . )

tex2html_wrap_inline819

tex2html_wrap_inline821

= 2 .

Click HERE to return to the list of problems.




The next problem requires an understanding of one-sided limits.

SOLUTION 14 : Consider the function tex2html_wrap_inline161

i.) The graph of f is given below.





ii.) Determine the following limits.

Click HERE to return to the list of problems.




SOLUTION 15 : Consider the function tex2html_wrap_inline199

Determine the values of constants a and b so that tex2html_wrap_inline187 exists. Begin by computing one-sided limits at x=2 and setting each equal to 3. Thus,

tex2html_wrap_inline209

and

tex2html_wrap_inline211 .

Now solve the system of equations

a+2b = 3 and b-4a = 3 .

Thus,

a = 3-2b so that b-4(3-2b) = 3

iff b-12+ 8b = 3

iff 9b = 15

iff tex2html_wrap_inline225 .

Then

tex2html_wrap_inline227 .

Click HERE to return to the list of problems.





Duane Kouba
Tue Aug 27 13:48:42 PDT 1996