SOLUTION 6: We are given the function $ f(x) = x + 3\cos x $ and the interval $ [-\pi, \pi]  $.  This function is continuous on the closed interval $ [0, \pi] $ since it is the sum of continuous functions $ y=x $ (polynomial) and $ y= 3 \cos x $ (well-known continuous). The derivative of $f$ is  
$$ f'(x) = 1 + 3(- \sin x) = 1 - 3 \sin x $$
  
We can now see that $f$ is differentiable on the open interval $ (-\pi, \pi) $.  The assumptions of the Mean Value Theorem have now been met.  Let's apply the Mean Value Theorem and find all possible values of $c$ in the open interval $(-\pi, \pi)$.  Then
$$ f'(c)= \displaystyle{ f(\pi)-f(-\pi) \over \pi - (-\pi) } \ \ \ \ \longrightarrow $$
$$ 1 - 3 \sin c = \displaystyle{  (\pi + 3\cos \pi) - (-\pi + 3\cos (-\pi) )  \over 2\pi } \ \ \ \ \longrightarrow  $$
$$ 1 - 3 \sin c = \displaystyle{  (\pi + 3(-1)) - (-\pi + 3(-1) )  \over 2\pi }   \ \ \ \ \longrightarrow  $$
$$ 1 - 3 \sin c = \displaystyle{  2\pi  \over 2\pi }   \ \ \ \ \longrightarrow  $$
$$ 1 - 3 \sin c = 1 \ \ \ \ \longrightarrow  $$
$$  - 3 \sin c = 0 \ \ \ \ \longrightarrow  $$
$$  \sin c = 0 \ \ \ \ \longrightarrow  $$
$$   c = 0  $$
Click  HERE  to return to the list of problems.