Processing math: 100%


SOLUTION 8: Draw a closed right circular cylinder of base radius r and height h, and assume that r and h are functions of time t.

tex2html_wrap_inline125



     a.) The surface area of a closed right circular cylinder of radius r is the sum of the areas of two circles and a rectangle: S=πr2+πr2+(base)(height)     S=2πr2+(circumference of circle)(height)     S=2πr2+(2πr)(h)     S=2πr2+2πrh

tex2html_wrap_inline125tex2html_wrap_inline125tex2html_wrap_inline125



GIVEN:    drdt=5 cm/hr. and dhdt=4 cm/hr.

FIND:    dSdt when r=20 cm. and h=12 cm.

Now differentiate the surface area equation with respect to time t using the product rule, getting

D{S}=D{2πr2+2πrh}    dSdt=2π2rdrdt+(2πrdhdt+2πdrdth)   

( Now let drdt=5,dhdt=4,r=20, and h=12.)

dSdt=4π(20)(5)+2π(20)(4)+2π(5)(12)    dSdt=400π160π+120π    dSdt=360π cm2/hr.1130.97 cm2/hr.      b.) The volume of a closed right circular cylinder of radius r is V=(area of circular base)(height)     V=πr2h GIVEN:    drdt=5 cm/hr. and dhdt=4 cm/hr.

FIND:    dVdt when r=20 cm. and h=12 cm.

Now differentiate the volume equation with respect to time t using the product rule, getting

D{V}=D{πr2h}    dVdt=πr2dhdt+2πrdrdth   

( Now let drdt=5,dhdt=4,r=20, and h=12.)

dVdt=π(20)2(4)+2π(20)(5)(12)    dVdt=1600π+2400π    dVdt=800π cm3/hr.2513.27 cm3/hr.

Click HERE to return to the list of problems.