Processing math: 100%
SOLUTION 8: Draw a closed right circular cylinder of base radius r and height h, and assume that r and h are functions of time t.
a.) The surface area of a closed right circular cylinder of radius r is the sum of the areas of two circles and a rectangle:
S=πr2+πr2+(base)(height) ⟶
S=2πr2+(circumference of circle)(height) ⟶
S=2πr2+(2πr)(h) ⟶
S=2πr2+2πrh


GIVEN: drdt=5 cm/hr. and dhdt=−4 cm/hr.
FIND: dSdt when r=20 cm. and h=12 cm.
Now differentiate the surface area equation with respect to time t using the product rule, getting
D{S}=D{2πr2+2πrh} ⟶
dSdt=2π⋅2rdrdt+(2πr⋅dhdt+2πdrdt⋅h) ⟶
( Now let drdt=5,dhdt=−4,r=20, and h=12.)
dSdt=4π(20)(5)+2π(20)(−4)+2π(5)(12) ⟶
dSdt=400π−160π+120π ⟶
dSdt=360π cm2/hr.≈1130.97 cm2/hr.
b.) The volume of a closed right circular cylinder of radius r is
V=(area of circular base)(height) ⟶
V=πr2h
GIVEN: drdt=5 cm/hr. and dhdt=−4 cm/hr.
FIND: dVdt when r=20 cm. and h=12 cm.
Now differentiate the volume equation with respect to time t using the product rule, getting
D{V}=D{πr2h} ⟶
dVdt=πr2⋅dhdt+2πrdrdt⋅h ⟶
( Now let drdt=5,dhdt=−4,r=20, and h=12.)
dVdt=π(20)2(−4)+2π(20)(5)(12) ⟶
dVdt=−1600π+2400π ⟶
dVdt=800π cm3/hr.≈2513.27 cm3/hr.
Click HERE to return to the list of problems.