Using vertical cross-sections to describe this region, we get that $$ 0 \le x \le \ln 3 \ \ and \ \ e^{-x} \le y \le e^{x} , $$ so that the area of this region is $$ AREA = \displaystyle{ \int_{0}^{\ln 3} (Top \ - \ Bottom) \ dx } $$ $$ = \displaystyle { \int_{0}^{\ln 3} (e^{x} - e^{-x}) \ dx } $$ $$ = \displaystyle { \Big(e^{x} - (-e^{-x})\Big) \Big\vert_{0}^{\ln 3} } $$ $$ = \displaystyle { \Big(e^{x} + e^{-x}\Big) \Big\vert_{0}^{\ln 3} } $$ $$ = \displaystyle { \Big(e^{\ln 3} + e^{-\ln 3}\Big) - \Big(e^{0} + e^{-0}\Big) } $$ $$ = \displaystyle { \Big(e^{\ln 3} + e^{\ln 3^{-1}}\Big) - \Big(1 + 1 \Big) } $$ $$ = \displaystyle { \Big(3 + \frac{1}{3}\Big) - 2 } $$ $$ = \displaystyle { \Big(\frac{10}{3}\Big) - 2 } $$ $$ = \displaystyle { \frac{10}{3} - \frac{6}{3} } $$ $$ = \displaystyle { \frac{4}{3} } $$
Click HERE to return to the list of problems.