Using vertical cross-sections to describe this region, we get that $$ -1 \le x \le 3 \ and \ x^2 \le y \le -x^{2}+4x+6 ,$$ so that the area of this region is $$ AREA = \displaystyle{ \int_{-1}^{3} (Top \ - \ Bottom) \ dx } $$ $$ = \displaystyle { \int_{-1}^{3} ((-x^{2}+4x+6)-(x^{2})) \ dx } $$ $$ = \displaystyle { \int_{-1}^{3} (-2x^{2}+4x+6) \ dx } $$ $$ = \displaystyle { \Big(\frac{-2x^{3}}{3} + \frac{4x^{2}}{2} + 6x \Big) \Big\vert_{-1}^{3} } $$ $$ = \displaystyle { \Big(-\frac{2}{3}x^{3} + 2x^{2} + 6x \Big) \Big\vert_{-1}^{3} } $$ $$ = \displaystyle { \Big( -\frac{2}{3}(3)^{3} + 2(3)^{2} + 6(3) \Big) - \Big( -\frac{2}{3}(-1)^{3} + 2(-1)^{2} + 6(-1) \Big) } $$ $$ = \displaystyle { \Big( -18 + 18 + 18 \Big) - \Big( \frac{2}{3} + 2 - 6 \Big) } $$ $$ = \displaystyle { \Big( 18 \Big) - \Big( \frac{2}{3} + \frac{6}{3} - \frac{18}{3} \Big) } $$ $$ = \displaystyle { \Big( 18 \Big) - \Big( - \frac{10}{3} \Big) } $$ $$ = \displaystyle { \frac{54}{3} + \frac{10}{3} } $$ $$ = \displaystyle {\frac{64}{3}} $$
Click HERE to return to the list of problems.