SOLUTION 17: Compute the area of the region enclosed by the graphs of the equations $ x=y^{2} $ and $ x=4 $ . Begin by finding the points of intersection of the two graphs. From $ x=y^{2} $ and $ x=4 $ we get that $$ y^{2} = 4 \ \ \longrightarrow $$ $$ y^{2} - 4 = 0 \ \ \longrightarrow $$ $$ (y+2)(y-2) = 0 \ \ \longrightarrow \ \ y = -2 \ \ or \ \ y = 2 $$ Now see the given graph of the enclosed region.

tex2html_wrap_inline125

Using horizontal cross-sections to describe this region, we get that $$ -2 \le y \le 2 \ \ and \ \ y^2 \le x \le 4 \ , $$ so that the area of this region is $$ AREA = \displaystyle{ \int_{-2}^{2} (Right \ - \ Left) \ dy } $$ $$ = \displaystyle { \int_{-2}^{2} (4 - y^{2}) \ dy } $$ $$ = \displaystyle { \Big( 4y - \frac{y^{3}}{3} \Big) \Big\vert_{-2}^{2} } $$ $$ = \displaystyle { \Big( 4(2) - \frac{(2)^{3}}{3} \Big) - \Big( 4(-2) - \frac{(-2)^{3}}{3} \Big) } $$ $$ = \displaystyle { \Big( 8 - \frac{8}{3} \Big) - \Big( -8 + \frac{8}{3} \Big) } $$ $$ = \displaystyle { 16 - \frac{16}{3} } $$ $$ = \displaystyle { \frac{48}{3} - \frac{16}{3} } $$ $$ = \displaystyle { \frac{32}{3} } $$

Click HERE to return to the list of problems.