![$ \displaystyle{ \int { \sqrt{x} + 1 \over \sqrt{x} ( \sqrt[3] {x} + 1 ) } \, dx } $](img59.gif) . Because we want to simultaneously eliminate a square root and a cube root, use the power substitution
 . Because we want to simultaneously eliminate a square root and a cube root, use the power substitution
	  
 
so that
	  ,
 ,
	 
 ,
 ,
	 
![$ \sqrt[3] {x} = x^{1/3} = (u^6)^{1/3} = u^2 $](img63.gif) ,
 , 
and
	 
 .
 .
Substitute into the original problem, replacing all forms of  , getting
, getting
	
![$ \displaystyle{ \int { \sqrt{x} + 1 \over \sqrt{x} ( \sqrt[3] {x} + 1 ) } \, dx } = \displaystyle{ \int { u^3 + 1 \over u^3(u^2+1) } \, (6u^5) du } $](img64.gif) 
	
 
	
 
	
 
(Use polynomial division. PLEASE INSERT A FACTOR OF 6 WHICH WAS ACCIDENTLY LEFT OUT.)
	
 
	
 
	
 
	
 
	
 .
 .	
	        	      
Click  HERE  to return to the list of problems.
         SOLUTION 8   :   Integrate 
 . Remove the ``outside" square root first. Use the power substitution
 . Remove the ``outside" square root first. Use the power substitution
	 
 
 
so that
	 
 ,
 ,
	 
 ,
 ,
	  ,
 , 
and (Use the chain rule.)
	 
 .
 .
Substitute into the original problem, replacing all forms of  , getting
, getting
	
 
	
 
	
 
	
 
	
 
	
 .
 .	
	        	      
Click  HERE  to return to the list of problems.
         SOLUTION 9   :   Integrate 
![$ \displaystyle{ \int \sqrt[3] { 1 + \sqrt{x-3} } \, dx } $](img85.gif) . Remove the cube root first. Use the power substitution
 . Remove the cube root first. Use the power substitution
	 
 
 
so that
	 
![$ u = \sqrt[3] { 1 + \sqrt{x-3} } $](img87.gif) ,
 ,
	 
 ,
 ,
	 
 ,
 , 
and (Use the chain rule.)
	 
 .
 .
Substitute into the original problem, replacing all forms of  , getting
, getting
	
![$ \displaystyle{ \int \sqrt[3] { 1 + \sqrt{x-3} } \, dx } = \displaystyle{ \int (u) \, (6u^5-6u^2) du } $](img91.gif) 
	
 
	
 
	
 
	
 
	
 .
 .	
	        	      
Click  HERE  to return to the list of problems.
         SOLUTION 10   :   Integrate 
 . Remove the ``outside" square root first. Use the power substitution
 . Remove the ``outside" square root first. Use the power substitution
	 
 
 
so that
	 
 
	 
 
 
	 
 
 
	 
 ,
 , 
and (Use the chain rule.)
	 
 ,
 ,
or
	 
 .
 .
Substitute into the original problem, replacing all forms of  , getting
, getting
	
 
	
 
	
 
	
 
	
 
	
 .
 .
	        	      
Click  HERE  to return to the list of problems.