SOLUTION 1: $ \ \ $ To integrate $ \displaystyle{ \int {\sqrt{1-x^2} } \ dx } $ use the trig substitution $$ x = \sin \theta $$ so that $$ dx = \cos \theta \ d\theta $$ Substitute into the original problem, replacing all forms of $ x $, getting $$ \displaystyle{ \int { \sqrt{1-x^2} } \ dx } = \displaystyle{ \int { \sqrt{1-\sin^2 \theta} } \ \cos \theta \ d\theta } $$ $$ = \displaystyle{ \int { \sqrt{\cos^2 \theta} \ \cos \theta \ } \ d\theta } $$ $$ = \displaystyle{ \int { \cos \theta \ \cos \theta \ } \ d\theta } $$ $$ = \displaystyle{ \int { \cos^2 \theta \ } \ du } $$ (Recall that $ \cos 2 \theta = 2 \cos^2 \theta -1 $ so that $ \cos^2 \theta = \displaystyle \frac{1}{2}(1+ \cos 2 \theta ) $.) $$ = \displaystyle{ \int { \frac{1}{2}(1+ \cos 2 \theta ) \ } \ du } $$ $$ = \displaystyle \frac{1}{2} \displaystyle{ \int { (1+ \cos 2 \theta ) \ } \ du } $$ $$ = \displaystyle \frac{1}{2} (\theta + \frac{1}{2} \sin 2 \theta ) + C $$ (Recall that $ \sin 2 \theta = 2 \sin \theta \cos \theta $.) $$ = \displaystyle \frac{1}{2} (\theta + \frac{1}{2} 2 \sin \theta \cos \theta ) + C $$ $$ = \displaystyle \frac{1}{2} (\theta + \sin \theta \cos \theta ) + C $$ $\Bigg($ We need to write our final answer in terms of $x$.

tex2html_wrap_inline125


Since $$ \sin \theta = x = \displaystyle{ x \over 1 } = \displaystyle{ opposite \over hypotenuse } $$ it follows that $ \theta = \arcsin x $, and from the Pythagorean Theorem that $$ \displaystyle (adjacent)^2 + (opposite)^2 = (hypotenuse)^2 \ \ \longrightarrow $$ $$ (adjacent)^2 + (x)^2 = (1)^2 \ \ \longrightarrow \ \ \ adjacent = \sqrt{1-x^2} \ \ \longrightarrow $$ $$ \cos \theta = \displaystyle{ adjacent \over hypotenuse }= \displaystyle{ \sqrt{1-x^2} \over 1 } = \sqrt{1-x^2} \ \Bigg) $$ $$ = \displaystyle \frac{1}{2} \Big(\arcsin x + x \sqrt{1-x^2} \Big) \ + C $$

Click HERE to return to the list of problems.