
12. Elementary Matrices and Determinants

Given a square matrix, is there an easy way to know when it is invertible?
Answering this fundamental question is our next goal.

For small cases, we already know the answer. If M is a 1 × 1 matrix,
then M = (m)⇒M−1 = (1/m). Then M is invertible if and only if m 6= 0.

For M a 2× 2 matrix, we showed in Section 10 that if M =
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Example For a 3 × 3 matrix, M =
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1 6= 0.

Notice that in the subscripts, each ordering of the numbers 1, 2, and 3
occurs exactly once. Each of these is a permutation of the set {1, 2, 3}.

Permutations

Consider n objects labeled 1 through n and shuffle them. Each possible
shuffle is called a permutation σ. For example, here is an example of a
permutation of 5:

σ =

[
1 2 3 4 5
4 2 5 1 3

]
=

[
1 2 3 4 5

σ(1) σ(2) σ(3) σ(4) σ(5)

]

We can consider σ as a function, and write σ(3) = 5, for example. Since the
top line of σ is always the same, we can omit the top line and just write:

σ =
[
σ(1) σ(2) σ(3) σ(4) σ(5)

]
=
[
4 2 5 1 3

]
The mathematics of permutations is extensive and interesting; there are

a few properties of permutations that we’ll need.
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• There are n! permutations of n distinct objects, since there are n
choices for the first object, n− 1 choices for the second once the first
has been chosen, and so on.

• Every permutation can be built up by successively swapping pairs of
objects. For example, to build up the permutation

[
3 1 2

]
from the

trivial permutation
[
1 2 3

]
, you can first swap 2 and 3, and then

swap 1 and 3.

• For any given permutation σ, there is some number of swaps it takes to
build up the permutation. (It’s simplest to use the minimum number
of swaps, but you don’t have to: it turns out that any way of building
up the permutation from swaps will have have the same parity of
swaps, either even or odd.) If this number happens to be even, then σ
is called an even permutation; if this number is odd, then σ is an odd
permutation. In fact, n! is even for all n ≥ 2, and exactly half of the
permutations are even and the other half are odd. It’s worth noting
that the trivial permutation (which sends i→ i for every i) is an even
permutation, since it uses zero swaps.

Definition The sign function is a function sgn(σ) that sends permutations
to the set {−1, 1}, defined by:

sgn(σ) =

{
1 if σ is even;
−1 if σ is odd.

We can use permutations to give a definition of the determinant.

Definition For an n × n matrix M , the determinant of M (sometimes
written |M |) is given by:

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) . . .m

n
σ(n).

The sum is over all permutations of n. Each summand is a product of a
single entry from each row, but with the column numbers shuffled by the
permutation σ.

The last statement about the summands yields a nice property of the
determinant:

Theorem. If M has a row consisting entirely of zeros, then mi
σ(i) = 0 for

every σ. Then detM = 0.
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Example Because there are many permutations of n, writing the determi-
nant this way for a general matrix gives a very long sum. For n = 4, there
are 24 permutations, and for n = 5, there are already 120 permutations.

For a 4× 4 matrix, M =
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, then detM is:
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3 ± 16 more terms.

This is very cumbersome.
Luckily, it is very easy to compute the determinants of certain matrices.

For example, if M is diagonal, then M i
j = 0 whenever i 6= j. Then all

summands of the determinant involving off-diagonal entries vanish, so:

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) . . .m

n
σ(n) = m1

1m
2
2 . . .m

n
n.

Thus, the determinant of a diagonal matrix is just the product of its diagonal
entries.

Since the identity matrix is diagonal with all diagonal entries equal to
one, we have:

det I = 1.

We would like to use the determinant to decide whether a matrix is
invertible or not. Previously, we computed the inverse of a matrix by ap-
plying row operations. As such, it makes sense to ask what happens to the
determinant when row operations are applied to a matrix.

Swapping Rows Swapping rows i and j (with i < j) in a matrix changes
the determinant. For a permutation σ, let σ̂ be the permutation obtained
by swapping i and j. The sign of σ̂ is the opposite of the sign of σ. Let M
be a matrix, and M ′ be the same matrix, but with rows i and j swapped.
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Then the determinant of M ′ is:

detM ′ =
∑
σ

sgn(σ)m1
σ(1) . . .m

j
σ(i) . . .m
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n
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= −detM. (1)

Thus we see that swapping rows changes the sign of the determinant.
This allows us another nice property of the determinant. If two rows

of the matrix are identical, then swapping the rows changes the sign of the
matrix, but leaves the matrix unchanged. Then we see the following:

Theorem. If M has two identical rows, then detM = 0.

Elementary Matrices

Our next goal is to find matrices that emulate the Gaussian row operations
on a matrix. In other words, for any matrix M , and a matrix M ′ equal to
M after a row operation, we wish to find a matrix R such that M ′ = RM .

We will first find a matrix that, when multiplied by a matrix M , swaps
rows i and j of M .

Let R1 through Rn denote the rows of M , and let M ′ be the matrix M
with rows i and j swapped. Then M can be regarded as a block matrix:

M =



...
Ri

...
Rj

...


, and M ′ =



...
Rj

...
Ri

...


.
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Then notice that:

M ′ =



...
Rj

...
Ri

...


=



1
. . .

0 1
. . .

1 0
. . .

1





...
Ri

...
Rj

...



The matrix is just the identity matrix with rows i and j swapped. This is
called an elementary matrix Eij . Then, symbolically,

M ′ = EijM

Because det I = 1 and swapping a pair of rows changes the sign of the
determinant, we have found that

detEij = −1
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Review Questions
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Prove that M is non-singular if and only if:
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2. i. What does the matrix E1
2 =

(
0 1
1 0

)
do to M =

(
a b
d c

)
under

left multiplication? What about right multiplication?

ii. Find elementary matrices R1(λ) and R2(λ) that respectively mul-
tiply rows 1 and 2 of M by λ but otherwise leave M the same
under left multiplication.

iii. Find a matrix S1
2(λ) that adds a multiple λ of row 2 to row 1

under left multiplication.

3. Let M a matrix and Eij the elementary matrix swapping two rows.
Explain every line of the series of equations proving that detM =
−det(EijM).

4. The inversion number of a permutation σ is the number of pairs i <
j such that σ(i) > σ(j); it’s the number of ‘numbers that appear
left of smaller numbers’ in the permutation. For example, for the
permutation σ = [4, 2, 3, 1], the inversion number is 5. 4 comes before
2, 3, and 1, and 2 and 3 both come before 1.

i. What is the inversion number of the permutation τi,j that ex-
changes i and j and leaves everything else alone? Is τi,j an even
or an odd permutation? What is τ2

i,j?

ii. Given a permutation σ, we can make a new permutation τi,jσ by
exchanging the ith and jth entries of σ. If σ has N inversions
and τi,jσ has M inversions, show that N and M have different
parity. In other words, applying a transposition to σ changes the
number of inversions by an odd number.

iii. Show that (−1)N = sgn(σ), where σ is a permutation with N in-
versions. (Hint: How many inversions does the identity permuta-
tion have? Also, recall that σ can be built up with transpositions.)
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