
19. Basis and Dimension

In the last Section, we established the notion of a linearly independent set
of vectors in a vector space V , and of a set of vectors that span V . We
saw that any set of vectors that span V can be reduced to some minimal
collection of linearly independent vectors; such a set is called a basis of the
subspace V .

Definition Let V be a vector space. Then a set S is a basis for V if S is
linearly independent and span S = V .

If S is a basis of V and S has only finitely many elements, then we say
that V is finite-dimensional. The number of vectors in S is the dimension
of V .

Suppose V is a finite-dimensional vector space, and S and T are two
different bases for V . One might worry that S and T have a different number
of vectors; then we would have to talk about the dimension of V in terms
of the basis S or in terms of the basis T . Luckily this isn’t what happens.
Later in this section, we will show that S and T must have the same number
of vectors. This means that the dimension of a vector space does not depend
on the basis. In fact, dimension is a very important way to characterize of
any vector space V .

Example Pn(t) has a basis {1, t, . . . , tn}, since every polynomial of degree
less than or equal to n is a sum

a0 1 + a1 t + . . . + an tn, ai ∈ R

so Pn(t) = span{1, t, . . . , tn}. This set of vectors is linearly independent: If
the polynomial p(t) = c01+c1t+ . . .+cntn = 0, then c0 = c1 = . . . = cn = 0,
so p(t) is the zero polynomial.

Then Pn(t) is finite dimensional, and dim Pn(t) = n + 1.

Theorem. Let S = {v1, . . . , vn} be a basis for a vector space V . Then every
vector w ∈ V can be written uniquely as a linear combination of vectors in
the basis S:

w = c1v1 + . . . + cnvn.

Proof. Since S is a basis for V , then span S = V , and so there exists con-
stants ci such that w = c1v1 + . . . + cnvn.
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Suppose there exists a second set of constants di such that w = d1v1 +
. . . + dnvn. Then:

0V = w − w

= c1v1 + . . . + cnvn − d1v1 + . . . + dnvn

= (c1 − d1)v1 + . . . + (cn − dn)vn.

If it occurs exactly once that ci 6= di, then the equation reduces to 0 =
(ci − di)vi, which is a contradiction since the vectors vi are assumed to be
non-zero.

If we have more than one i for which ci 6= di, we can use this last equation
to write one of the vectors in S as a linear combination of other vectors in
S, which contradicts the assumption that S is linearly independent. Then
for every i, ci = di.

Next, we would like to establish a method for determining whether a
collection of vectors forms a basis for Rn. But first, we need to show that
any two bases for a finite-dimensional vector space has the same number of
vectors.

Lemma. If S = {v1, . . . , vn} is a basis for a vector space V and T =
{w1, . . . , wm} is a linearly independent set of vectors in V , then m ≤ n.

Proof. The idea is to start with the set S and replace vectors in S one at a
time with vectors from T , such that after each replacement we still have a
basis for V .

Since S spans V , then the set {w1, v1, . . . , vn} is linearly dependent.
Then we can write w1 as a linear combination of the vi; using that equation,
we can express one of the vi in terms of w1 and the remaining vj with
j 6= i. Then we can discard one of the vi from this set to obtain a linearly
independent set that still spans V . Now we need to prove that S1 is a basis;
we need to show that S1 is linearly independent and that S1 spans V .

The set S1 = {w1, v1, . . . , vi−1, vi+1, . . . , vn} is linearly independent: By
the previous theorem, there was a unique way to express w1 in terms of the
set S. Now, to obtain a contradiction, suppose there is some k and constants
ci such that

vk = c0w1 + c1v1 + . . . + ci−1vi−1 + ci+1vi+1 + . . . + cnvn.

Then replacing w1 with its expression in terms of the collection S gives a way
to express the vector vk as a linear combination of the vectors in S, which
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contradicts the linear independence of S. On the other hand, we cannot
express w1 as a linear combination of the vectors in {vj |j 6= i}, since the
expression of w1 in terms of S was unique, and had a non-zero coefficient
on the vector vi. Then no vector in S1 can be expressed as a combination
of other vectors in S1, which demonstrates that S1 is linearly independent.

The set S1 spans V : For any u ∈ V , we can express u as a linear
combination of vectors in S. But we can express vi as a linear combination
of vectors in the collection S1; rewriting vi as such allows us to express u as
a linear combination of the vectors in S1.

Then S1 is a basis of V with n vectors.
We can now iterate this process, replacing one of the vi in S1 with w2, and

so on. If m ≤ n, this process ends with the set Sm = {w1, . . . , wm, vi1 , . . . , vin−m},
which is fine.

Otherwise, we have m > n, and the set Sn = {w1, . . . , wn} is a basis for
V . But we still have some vector wn+1 in T that is not in Sn. Since Sn

is a basis, we can write wn+1 as a combination of the vectors in Sn, which
contradicts the linear independence of the set T . Then it must be the case
that m ≤ n, as desired.

Corollary. For a finite dimensional vector space V , any two bases for V
have the same number of vectors.

Proof. Let S and T be two bases for V . Then both are linearly independent
sets that span V . Suppose S has n vectors and T has m vectors. Then by
the previous lemma, we have that m ≤ n. But (exchanging the roles of S
and T in application of the lemma) we also see that n ≤ m. Then m = n,
as desired.

Bases in Rn.

From one of the review questions, we know that

Rn = span




1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1


 ,

and that this set of vectors is linearly independent. So this set of vectors is
a basis for Rn, and dim Rn = n. This basis is often called the standard or
canonical basis for Rn. The vector with a one in the ith position and zeros
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everywhere else is written ei. It points in the direction of the ith coordinate
axis, and has unit length. In multivariable calculus classes, this basis is often
written {i, j, k} for R3.

Bases are not unique. While there exists a unique way to express a vec-
tor in terms of any particular basis, bases themselves are far from unique.
For example, both of the sets:{(

1
0

)
,

(
0
1

)}
and

{(
1
1

)
,

(
1
−1

)}
are bases for R2. Rescaling one of these sets is already enough to show that
R2 has infinitely many bases. But even if we require that all of the basis
vectors have unit length, it turns out that there are still infinitely many
bases for R2. (See Review Question 3.)

To see whether a collection of vectors S = {v1, . . . , vm} is a basis for Rn,
we have to check that they are linearly independent and that they span Rn.
From the previous discussion, we also know that m must equal n, so assume
S has n vectors.

If S is linearly independent, then there is no non-trivial solution of the
equation

0 = x1v1 + . . . + xnvn.

Let M be a matrix whose columns are the vectors vi. Then the above
equation is equivalent to requiring that there is a unique solution to MX =
0.

To see if S spans Rn, we take an arbitrary vector w and solve the linear
system

w = x1v1 + . . . + xnvn

in the unknowns ci. For this, we need to find a unique solution for the linear
system MX = w.

Thus, we need to show that M−1 exists, so that

X = M−1w

is the unique solution we desire. Then we see that S is a basis for V if and
only if det M 6= 0.

Theorem. Let S = {v1, . . . , vm} be a collection of vectors in Rn. Let M be
the matrix whose columns are the vectors in S. Then S is a basis for V if
and only if m is the dimension of V and

det M 6= 0.
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Example Let

S = {
(

1
0

)
,

(
0
1

)
} and T = {

(
1
1

)
,

(
1
−1

)
}.

Then set MS =

(
1 0
0 1

)
. Since det MS = 1 6= 0, then S is a basis for R2.

Likewise, set MT =

(
1 1
1 −1

)
. Since det MT = −2 6= 0, then T is a basis

for R2.
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Review Questions

1. Let S be a collection of vectors in a vector space V . Show that if
every vector w in V can be expressed uniquely as a linear combination
of vectors in S, then S is a basis of V . (This is the converse to the
theorem in the lecture.)

2. Show that the set of all linear transformations mapping R3 → R is itself
a vector space. Find a basis for this vector space. Do you think your
proof could be modified to work for linear transformations Rn → R?

(Hint: Represent R3 as column vectors, and argue that a linear trans-
formation T : R3 → R is just a column vector.)

(Hint: If you are really stuck (or just curious), look up “dual space.”
This is a big idea, though, and could just be more confusing.)

3. i. Draw the collection of all unit vectors in R2.
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ii. Let Sx = {
(

1
0

)
, x}, where x is a unit vector in R2. For which x

is Sx a basis of R2?

4. Let Bn be the vector space of column vectors with bit ({0, 1}) entries.
Write down every basis for B1 and B2. How many bases are there for
B3? B4? Can you make a conjecture for the number of bases for Bn?

(Hint: You can build up a basis for Bn by choosing one vector at a
time, such that the vector you choose is not in the span of the previous
vectors you’ve chosen. How many vectors are in the span of any one
vector? Any two vectors? How many vectors are in the span of any k
vectors, for k ≤ n?)
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