22. Diagonalizing Symmetric Matrices

Symmetric matrices have many applications. For example, if we consider the shortest distance between pairs of important cities, we might get a table like this: $\overline{1}$

Encoded as a matrix, we obtain:

$$
M = \begin{pmatrix} 0 & 2000 & 80 \\ 2000 & 0 & 2010 \\ 80 & 2010 & 0 \end{pmatrix} = M^{T}.
$$

Definition A matrix is symmetric if it obeys

$$
M = M^T.
$$

One very nice property of symmetric matrices is that they always have real eigenvalues. The general proof is an exercise, but here's an example for 2×2 matrices.

Example For a general symmetric 2×2 matrix, we have:

$$
P_{\lambda} \begin{pmatrix} a & b \\ b & d \end{pmatrix} = \det \begin{pmatrix} \lambda - a & -b \\ -b & \lambda - d \end{pmatrix}
$$

= $(\lambda - a)(\lambda - d) - b^2$
= $\lambda^2 - (a + d)\lambda - b^2 + ad$
 $\Rightarrow \lambda = \frac{a + d}{2} \pm \sqrt{b^2 + \left(\frac{(a - d)}{2}\right)^2}.$

Notice that the discriminant $4b^2 + (a - d)^2$ is always positive, so that the eigenvalues must be real.

Now, suppose a symmetric matrix M has two distinct eigenvalues $\lambda \neq \mu$ and eigenvectors x and y :

$$
Mx = \lambda x, \qquad My = \lambda y.
$$

Consider the dot product $x \cdot y = x^T y = y^T x$. And now calculate:

$$
x^T M y = x^T \mu y = \mu x \cdot y
$$
, and
\n
$$
x^T M y = (y^T M x)^T
$$
 (by transposing a 1 × 1 matrix)
\n
$$
= x^T M^T y
$$

\n
$$
= x^T M y
$$

\n
$$
= x^T \lambda y
$$

\n
$$
= \lambda x \cdot y.
$$

Subtracting these two results tells us that:

$$
0 = x^T M y - x^T M y = (\mu - \lambda) x \cdot y.
$$

Since μ and λ were assumed to be distinct eigenvalues, $\lambda - \mu$ is non-zero, and so $x \cdot y = 0$. Then we have proved the following theorem.

Theorem. Eigenvectors of a symmetric matrix with distinct eigenvalues are orthogonal.

Example The matrix $M =$ $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ has eigenvalues determined by $\det(M - \lambda) = (2 - \lambda)^2 - 1 = 0.$

Then the eigenvalues of M are 3 and 1, and the associated eigenvectors turn out to be $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 1 $\Big)$ and $\Big($ 1 −1 \setminus . It is easily seen that these eigenvectors are orthogonal:

$$
\begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0
$$

Last lecture we saw that the matrix P built from orthonormal basis vectors $\{v_1, \ldots, v_n\}$

$$
P = \begin{pmatrix} v_1 & \dots & v_n \end{pmatrix}
$$

was an orthogonal matrix:

$$
P^{-1} = P^{T}
$$
, or $PP^{T} = I = P^{T}P$.

Moreover, given any (unit) vector x_1 , one can always find vectors x_2 , ..., x_n such that $\{x_1, \ldots, x_n\}$ is an orthonormal basis. (Such a basis can

be obtained using the "Gram-Schmidt" procedure, which we will present Hyperlink to notes24! later.)

Now suppose M is a symmetric $n \times n$ matrix and λ_1 is an eigenvalue with eigenvector x_1 . Let the square matrix of column vectors P be the following:

$$
P = \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix},
$$

where x_1 through x_n are orthonormal, and x_1 is an eigenvector for M, but the others are not necessarily eigenvectors for M . Then

$$
MP = \begin{pmatrix} \lambda_1 x_1 & Mx_2 & \dots & Mx_n \end{pmatrix}.
$$

But P is an orthogonal matrix, so $P^{-1} = P^{T}$. Then:

$$
P^{-1} = P^{T} = \begin{pmatrix} x_{1}^{T} \\ \vdots \\ x_{n}^{T} \end{pmatrix}
$$

\n
$$
\Rightarrow P^{T}MP = \begin{pmatrix} x_{1}^{T}\lambda_{1}x_{1} & \cdots & \cdots & \cdots \\ x_{2}^{T}\lambda_{1}x_{1} & \cdots & \cdots & \cdots \\ \vdots & & & & \vdots \\ x_{n}^{T}\lambda_{1}x_{1} & \cdots & \cdots & \cdots \\ \vdots & & & & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ \vdots & & & & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & & & & & \vdots \\ \vdots & & & & \hat{M} \end{pmatrix}
$$

The last equality follows since $P^{T}MP$ is symmetric. The asterisks in the matrix are where "stuff" happens; this extra information is denoted by M in the final equation. We know nothing about M except that it is an $(n-1) \times (n-1)$ matrix and that it is symmetric. But then, by finding an (unit) eigenvector for \tilde{M} , we could repeat this procedure successively. The end result would be a diagonal matrix with eigenvalues of M on the diagonal. Then we have proved a theorem.

Theorem. Every symmetric matrix is similar to a diagonal matrix of its eigenvalues. In other words,

$$
M = M^T \Rightarrow M = PDP^T
$$

where P is an orthogonal matrix and D is a diagonal matrix whose entries are the eigenvalues of M.

To diagonalize a real symmetric matrix, begin by building an orthogonal matrix from an orthonormal basis of eigenvectors.

Example The symmetric matrix $M =$ $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ has eigenvalues 3 and 1 with eigenvectors $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 1 $\Big)$ and $\Big($ 1 −1 \setminus respectively. From these eigenvectors, we normalize and build the orthogonal matrix:

$$
P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix}
$$

Notice that $P^T P = I_2$. Then:

$$
MP = \begin{pmatrix} \frac{3}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{3}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}.
$$

In short, $MP = DP$, so $D = P^TMP$. Then D is the diagonalized form of M and P the associated change-of-basis matrix from the standard basis to the basis of eigenvectors.

References

• Hefferon, Chapter Three, Section V: Change of Basis

Wikipedia:

- [Symmetric Matrix](http://en.wikipedia.org/wiki/Symmetric_matrix)
- [Diagonalizable Matrix](http://en.wikipedia.org/wiki/Diagonalizable_matrix)
- $\bullet\,$ [Similar Matrix](http://en.wikipedia.org/wiki/Similar_matrix)

Review Questions

- 1. (On Reality of Eigenvectors)
	- *i*. Suppose $z = x + iy$ where $x, y \in \mathbb{R}, i = \sqrt{\ }$ $\overline{-1}$, and $\overline{z} = x - iy$. Compute \overline{z} . What can you say about $z\overline{z}$ and $\overline{z}z$? This operation is called complex conjugation.
	- *ii*. What can you say about complex numbers λ that obey $\lambda = \overline{\lambda}$?

iii. Let
$$
x = \begin{pmatrix} z^1 \\ \vdots \\ z^n \end{pmatrix} \in \mathbb{C}^n
$$
. Let $x^{\dagger} = \begin{pmatrix} \overline{z^1} & \dots & \overline{z^n} \end{pmatrix} \in \mathbb{C}^n$. Compute

 $x^{\dagger}x$. What can you say about the result?

iv. Suppose $M = M^T$ is an $n \times n$ symmetric matrix with real entries. Let λ be an eigenvalue of M with eigenvector x, so $Mx = \lambda x$. Compute:

$$
\frac{x^{\dagger}Mx}{x^{\dagger}x}
$$

- v. Suppose Λ is a 1×1 matrix. What is Λ^T ?
- *vi*. What is the size of the matrix $x^{\dagger} M x$?
- *vii.* For any matrix (or vector) N, we can compute \overline{N} by applying complex conjugation to each entry of N. Compute $(x^{\dagger})^T$. Then compute $(x^{\dagger}Mx)^T$.
- *viii.* Show that $\lambda = \overline{\lambda}$. What does this say about λ ?
- 2. Let $x_1 =$ $\sqrt{ }$ $\overline{ }$ a b c \setminus , where $a^2 + b^2 + c^2 = 1$. Find vectors x_2 and x_3 such

that $\{x_1, x_2, x_3\}$ is an orthonormal basis for \mathbb{R}^3 .

3. What can you say about the sum of the dimensions of the eigenspaces of a real symmetric matrix?