
22. Diagonalizing Symmetric Matrices

Symmetric matrices have many applications. For example, if we consider
the shortest distance between pairs of important cities, we might get a table
like this:

Davis Seattle San Francisco
Davis 0 2000 80

Seattle 2000 0 2010
San Francisco 80 2010 0

Encoded as a matrix, we obtain:

M =

 0 2000 80
2000 0 2010
80 2010 0

 = MT .

Definition A matrix is symmetric if it obeys

M = MT .

One very nice property of symmetric matrices is that they always have
real eigenvalues. The general proof is an exercise, but here’s an example for
2× 2 matrices.

Example For a general symmetric 2× 2 matrix, we have:

Pλ

(
a b
b d

)
= det

(
λ− a −b
−b λ− d

)
= (λ− a)(λ− d)− b2

= λ2 − (a+ d)λ− b2 + ad

⇒ λ =
a+ d

2
±

√
b2 +

(
(a− d)

2

)2

.

Notice that the discriminant 4b2 + (a − d)2 is always positive, so that the
eigenvalues must be real.

Now, suppose a symmetric matrix M has two distinct eigenvalues λ 6= µ
and eigenvectors x and y:

Mx = λx, My = λy.
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Consider the dot product x y = xT y = yTx. And now calculate:

xTMy = xTµy = µx y, and

xTMy = (yTMx)T (by transposing a 1× 1 matrix)

= xTMT y

= xTMy

= xTλy

= λx y.

Subtracting these two results tells us that:

0 = xTMy − xTMy = (µ− λ)x y.

Since µ and λ were assumed to be distinct eigenvalues, λ − µ is non-zero,
and so x y = 0. Then we have proved the following theorem.

Theorem. Eigenvectors of a symmetric matrix with distinct eigenvalues are
orthogonal.

Example The matrix M =

(
2 1
1 2

)
has eigenvalues determined by

det(M − λ) = (2− λ)2 − 1 = 0.

Then the eigenvalues of M are 3 and 1, and the associated eigenvectors

turn out to be

(
1
1

)
and

(
1
−1

)
. It is easily seen that these eigenvectors are

orthogonal: (
1
1

) (
1
−1

)
= 0

Last lecture we saw that the matrix P built from orthonormal basis
vectors {v1, . . . , vn}

P =
(
v1 . . . vn

)
was an orthogonal matrix:

P−1 = P T , or PP T = I = P TP.

Moreover, given any (unit) vector x1, one can always find vectors x2,
. . ., xn such that {x1, . . . , xn} is an orthonormal basis. (Such a basis can
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be obtained using the “Gram-Schmidt” procedure, which we will present Hyperlink to notes24!

later.)
Now suppose M is a symmetric n×n matrix and λ1 is an eigenvalue with

eigenvector x1. Let the square matrix of column vectors P be the following:

P =
(
x1 x2 . . . xn

)
,

where x1 through xn are orthonormal, and x1 is an eigenvector for M , but
the others are not necessarily eigenvectors for M . Then

MP =
(
λ1x1 Mx2 . . . Mxn

)
.

But P is an orthogonal matrix, so P−1 = P T . Then:

P−1 = P T =

x
T
1
...
xTn



⇒ P TMP =


xT1 λ1x1 ∗ . . . ∗
xT2 λ1x1 ∗ . . . ∗

...
...

xTnλ1x1 ∗ . . . ∗



=


λ1 ∗ . . . ∗
0 ∗ . . . ∗
... ∗

...
0 ∗ . . . ∗



=


λ1 0 . . . 0
0
... M̂
0


The last equality follows since P TMP is symmetric. The asterisks in the
matrix are where “stuff” happens; this extra information is denoted by
M̂ in the final equation. We know nothing about M̂ except that it is an
(n − 1) × (n − 1) matrix and that it is symmetric. But then, by finding
an (unit) eigenvector for M̂ , we could repeat this procedure successively.
The end result would be a diagonal matrix with eigenvalues of M on the
diagonal. Then we have proved a theorem.
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Theorem. Every symmetric matrix is similar to a diagonal matrix of its
eigenvalues. In other words,

M = MT ⇒M = PDP T

where P is an orthogonal matrix and D is a diagonal matrix whose entries
are the eigenvalues of M .

To diagonalize a real symmetric matrix, begin by building an orthogonal
matrix from an orthonormal basis of eigenvectors.

Example The symmetric matrix M =

(
2 1
1 2

)
has eigenvalues 3 and 1

with eigenvectors

(
1
1

)
and

(
1
−1

)
respectively. From these eigenvectors, we

normalize and build the orthogonal matrix:

P =

( 1√
2

1√
2

1√
2
−1√

2

)

Notice that P TP = I2. Then:

MP =

( 3√
2

1√
2

3√
2
−1√

2

)
=

( 1√
2

1√
2

1√
2
−1√

2

)(
3 0
0 1

)
.

In short, MP = DP , so D = P TMP . Then D is the diagonalized form of
M and P the associated change-of-basis matrix from the standard basis to
the basis of eigenvectors.
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Review Questions

1. (On Reality of Eigenvectors)

i. Suppose z = x + iy where x, y ∈ R, i =
√
−1, and z = x − iy.

Compute z. What can you say about zz and zz? This operation
is called complex conjugation.

ii. What can you say about complex numbers λ that obey λ = λ?

iii. Let x =

z
1

...
zn

 ∈ Cn. Let x† =
(
z1 . . . zn

)
∈ Cn. Compute

x†x. What can you say about the result?

iv. Suppose M = MT is an n×n symmetric matrix with real entries.
Let λ be an eigenvalue of M with eigenvector x, so Mx = λx.
Compute:

x†Mx

x†x

v. Suppose Λ is a 1× 1 matrix. What is ΛT ?

vi. What is the size of the matrix x†Mx?

vii. For any matrix (or vector) N , we can compute N by applying
complex conjugation to each entry of N . Compute (x†)T . Then
compute (x†Mx)T .

viii. Show that λ = λ. What does this say about λ?

2. Let x1 =

ab
c

, where a2 + b2 + c2 = 1. Find vectors x2 and x3 such

that {x1, x2, x3} is an orthonormal basis for R3.

3. What can you say about the sum of the dimensions of the eigenspaces
of a real symmetric matrix?
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