
Problem Sets for Linear Algebra in Twenty Five Lectures

February 7, 2012

Selected problems for students to hand in.
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1 Problems: What is Linear Algebra

1. Let M be a matrix and u and v vectors:

M =

(
a b
c d

)
, v =

(
x
y

)
, u =

(
w
z

)
.

(a) Propose a definition for u+ v.

(b) Check that your definition obeys Mv +Mu = M(u+ v).



2. Matrix Multiplication: Let M and N be matrices

M =

(
a b
c d

)
and N =

(
e f
g h

)
,

and v a vector

v =

(
x
y

)
.

Compute the vector Nv using the rule given above. Now multiply this vector by the matrix M , i.e., compute the
vector M(Nv).

Next recall that multiplication of ordinary numbers is associative, namely the order of brackets does not matter:
(xy)z = x(yz). Let us try to demand the same property for matrices and vectors, that is

M(Nv) = (MN)v .

We need to be careful reading this equation because Nv is a vector and so is M(Nv). Therefore the right hand
side, (MN)v should also be a vector. This means that MN must be a matrix; in fact it is the matrix obtained by
multiplying the matrices M and N . Use your result for M(Nv) to find the matrix MN .



3. Pablo is a nutritionist who knows that oranges always have twice as much sugar as apples. When considering the
sugar intake of schoolchildren eating a barrel of fruit, he represents the barrel like so:

sugar

fruit

(s, f)

Find a linear transformation relating Pablo’s representation to the one in the lecture. Write your answer as a
matrix.

Hint: Let λ represent the amount of sugar in each apple.

Hint

http://math.ucdavis.edu/~linear/videos/what_is_linear_algebra_hint.mp4


4. There are methods for solving linear systems other than Gauss’ method. One often taught in high school is to
solve one of the equations for a variable, then substitute the resulting expression into other equations. That step is
repeated until there is an equation with only one variable. From that, the first number in the solution is derived,
and then back-substitution can be done. This method takes longer than Gauss’ method, since it involves more
arithmetic operations, and is also more likely to lead to errors. To illustrate how it can lead to wrong conclusions,
we will use the system

x+ 3y = 1
2x+ y =−3
2x+ 2y = 0

(a) Solve the first equation for x and substitute that expression into the second equation. Find the resulting y.

(b) Again solve the first equation for x, but this time substitute that expression into the third equation. Find this
y.

What extra step must a user of this method take to avoid erroneously concluding a system has a solution?



2 Problems: Gaussian Elimination

1. State whether the following augmented matrices are in RREF and compute their solution sets.
1 0 0 0 3 1
0 1 0 0 1 2
0 0 1 0 1 3
0 0 0 1 2 0

 ,


1 1 0 1 0 1 0
0 0 1 2 0 2 0
0 0 0 0 1 3 0
0 0 0 0 0 0 0

 ,


1 1 0 1 0 1 0 1
0 0 1 2 0 2 0 −1
0 0 0 0 1 3 0 1
0 0 0 0 0 2 0 −2
0 0 0 0 0 0 1 1

 .



2. Show that this pair of augmented matrices are row equivalent, assuming ad− bc 6= 0:(
a b e
c d f

)
∼

(
1 0 de−bf

ad−bc
0 1 af−ce

ad−bc

)



3. Consider the augmented matrix:

(
2 −1 3
−6 3 1

)
Give a geometric reason why the associated system of equations has no solution. (Hint, plot the three vectors given
by the columns of this augmented matrix in the plane.) Given a general augmented matrix(

a b e
c d f

)
,

can you find a condition on the numbers a, b, c and d that create the geometric condition you found?



4. List as many operations on augmented matrices that preserve row equivalence as you can. Explain your answers.
Give examples of operations that break row equivalence.



5. Row equivalence of matrices is an example of an equivalence relation. Recall that a relation ∼ on a set of objects
U is an equivalence relation if the following three properties are satisfied:

• Reflexive: For any x ∈ U , we have x ∼ x.

• Symmetric: For any x, y ∈ U , if x ∼ y then y ∼ x.

• Transitive: For any x, y and z ∈ U , if x ∼ y and y ∼ z then x ∼ z.

(For a fuller discussion of equivalence relations, see Homework 0, Problem 4)

Show that row equivalence of augmented matrices is an equivalence relation.

Hints for Questions 4 and 5

http://webwork.math.ucdavis.edu/webwork2/LinearAlgebra/Webwork Homework0-Background/4/
http://math.ucdavis.edu/~linear/videos/gaussian_elimination_hints.mp4


3 Problems: Elementary Row Operations

1. (Row Equivalence)

(a) Solve the following linear system using Gauss-Jordan elimination:

2x1 + 5x2 − 8x3 + 2x4 + 2x5 = 0

6x1 + 2x2 −10x3 + 6x4 + 8x5 = 6

3x1 + 6x2 + 2x3 + 3x4 + 5x5 = 6

3x1 + 1x2 − 5x3 + 3x4 + 4x5 = 3

6x1 + 7x2 − 3x3 + 6x4 + 9x5 = 9

Be sure to set your work out carefully with equivalence signs ∼ between each step, labeled by the row operations
you performed.

(b) Check that the following two matrices are row-equivalent:(
1 4 7 10
2 9 6 0

)
and

(
0 −1 8 20
4 18 12 0

)
Now remove the third column from each matrix, and show that the resulting two matrices (shown below) are
row-equivalent: (

1 4 10
2 9 0

)
and

(
0 −1 20
4 18 0

)
Now remove the fourth column from each of the original two matrices, and show that the resulting two matrices,
viewed as augmented matrices (shown below) are row-equivalent:(

1 4 7
2 9 6

)
and

(
0 −1 8
4 18 12

)
Explain why row-equivalence is never affected by removing columns.

(c) Check that the matrix

1 4 10
3 13 9
4 17 20

 has no solutions. If you remove one of the rows of this matrix, does the

new matrix have any solutions? In general, can row equivalence be affected by removing rows? Explain why
or why not.



2. (Gaussian Elimination) Another method for solving linear systems is to use row operations to bring the augmented
matrix to row echelon form. In row echelon form, the pivots are not necessarily set to one, and we only require that
all entries left of the pivots are zero, not necessarily entries above a pivot. Provide a counterexample to show that
row echelon form is not unique.

Once a system is in row echelon form, it can be solved by “back substitution.” Write the following row echelon
matrix as a system of equations, then solve the system using back-substitution.2 3 1 6

0 1 1 2
0 0 3 3





3. Explain why the linear system has no solutions: 1 0 3 1
0 1 2 4
0 0 0 6


For which values of k does the system below have a solution?

x − 3y = 6
x + 3 z =− 3

2x + ky + (3− k)z = 1

Hint for question 3

http://math.ucdavis.edu/~linear/videos/elementary_row_operations_hint.mp4


4 Problems: Solution Sets for Systems of Linear Equations

1. Let f(X) = MX where

M =

1 0 1 −1
0 1 −1 1
0 0 0 0

 and X =


x1
x2
x3
x4

 .

Suppose that α is any number. Compute the following four quantities:

αX , f(X) , αf(X) and f(αX) .

Check your work by verifying that
αf(X) = f(αX) .

Now explain why the result checked in the Lecture, namely

f(X + Y ) = f(X) + f(Y ) ,

and your result f(αX) = αf(X) together imply

f(αX + βY ) = αf(X) + βf(Y ) .



2. Write down examples of augmented matrices corresponding to each of the five types of solution sets for systems of
equations with three unknowns.



3. Let

M =


a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
...

ar1 ar2 · · · ark

 , X =


x1

x2

...
xk


Propose a rule for MX so that MX = 0 is equivalent to the linear system:

a11x
1 +a12x

2 · · ·+a1kxk = 0

a21x
1 +a22x

2 · · ·+a2kxk = 0

...
...

...
...

ar1x
1 +ar2x

2 · · ·+arkxk = 0

Show that your rule for multiplying a matrix by a vector obeys the linearity property.

Note that in this problem, x2 does not denote the square of x. Instead x1, x2, x3, etc... denote different variables.
Although confusing at first, this notation was invented by Albert Einstein who noticed that quantities like a21x

1 +

a22x
2 · · ·+a2kx

k could be written in summation notation as
∑k
j=1 a

2
jx
j. Here j is called a summation index. Einstein

observed that you could even drop the summation sign
∑

and simply write a2jx
j.

Problem 3 hint

http://en.wikipedia.org/wiki/Einstein_notation
http://math.ucdavis.edu/~linear/videos/solution_sets_for_systems_of_linear_equations_hint.mp4


4. Use the rule you developed in the problem 3 to compute the following products
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16




1
2
3
4




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




14
14
21
35
62




1 42 97 2 −23 46
0 1 3 1 0 33
11 π 1 0 46 29
−98 12 0 33 99 98

log 2 0
√

2 0 e 23




0
0
0
0
0
0


 1 2 3 4 5 6

7 8 9 10 11 12
13 14 15 16 17 18




0
0
1
0
0
0


Now that you are good at multiplying a matrix with a column vector, try your hand at a product of two matrices

 1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18




1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0


Hint, to do this problem view the matrix on the right as three column vectors next to one another.



5. The standard basis vector ei is a column vector with a one in the ith row, and zeroes everywhere else. Using the
rule for multiplying a matrix times a vector in problem 3, find a simple rule for multiplying Mei, where M is the
general matrix defined there.



5 Problems: Vectors in Space, n-Vectors

1. When he was young, Captain Conundrum mowed lawns on weekends to help pay his college tuition bills. He charged
his customers according to the size of their lawns at a rate of 5¢ per square foot and meticulously kept a record of
the areas of their lawns in an ordered list:

A = (200, 300, 50, 50, 100, 100, 200, 500, 1000, 100) .

He also listed the number of times he mowed each lawn in a given year, for the year 1988 that ordered list was

f = (20, 1, 2, 4, 1, 5, 2, 1, 10, 6) .

(a) Pretend that A and f are vectors and compute A f .

(b) What quantity does the dot product A f measure?

(c) How much did Captain Conundrum earn from mowing lawns in 1988? Write an expression for this amount in
terms of the vectors A and f .

(d) Suppose Captain Conundrum charged different customers different rates. How could you modify the expression
in part 1c to compute the Captain’s earnings?

2. (2) Find the angle between the diagonal of the unit square in R2 and one of the coordinate axes.

(3) Find the angle between the diagonal of the unit cube in R3 and one of the coordinate axes.

(n) Find the angle between the diagonal of the unit (hyper)-cube in Rn and one of the coordinate axes.

(∞) What is the limit as n→∞ of the angle between the diagonal of the unit (hyper)-cube in Rn and one of the
coordinate axes?



3. Consider the matrix M =

(
cos θ sin θ
− sin θ cos θ

)
and the vector X =

(
x
y

)
.

(a) Sketch X and MX in R2 for several values of X and θ.

(b) Compute ||MX||
||X|| for arbitrary values of X and θ.

(c) Explain your result for (b) and describe the action of M geometrically.

4. Suppose in R2 I measure the x direction in inches and the y direction in miles. Approximately what is the real-

world angle between the vectors

(
0
1

)
and

(
1
1

)
? What is the angle between these two vectors according to the

dot-product? Give a definition for an inner product so that the angles produced by the inner product are the actual
angles between vectors.



5. (Lorentzian Strangeness). For this problem, consider Rn with the Lorentzian inner product and metric defined
above.

(a) Find a non-zero vector in two-dimensional Lorentzian space-time with zero length.

(b) Find and sketch the collection of all vectors in two-dimensional Lorentzian space-time with zero length.

(c) Find and sketch the collection of all vectors in three-dimensional Lorentzian space-time with zero length.

The Story of Your Life

http://math.ucdavis.edu/~linear/videos/vectors_in_space_n_vectors_hint.mp4


6 Problems: Vector Spaces

1. Check that V =

{(
x
y

)
: x, y ∈ R

}
= R2 with the usual addition and scalar multiplication is a vector space.



2. Check that the complex numbers C = {x+ iy|x, y ∈ R} form a vector space over C. Make sure you state carefully
what your rules for vector addition and scalar multiplication are. Also, explain what would happen if you used R
as the base field (try comparing to problem 1).



3. (a) Consider the set of convergent sequences, with the same addition and scalar multiplication that we defined for
the space of sequences:

V =
{
f |f : N→ R, lim

n→∞
f ∈ R

}
Is this still a vector space? Explain why or why not.

(b) Now consider the set of divergent sequences, with the same addition and scalar multiplication as before:

V =
{
f |f : N→ R, lim

n→∞
f does not exist or is ±∞

}
Is this a vector space? Explain why or why not.



4. Consider the set of 2× 4 matrices:

V =

{(
a b c d
e f g h

)
|a, b, c, d, e, f, g, h ∈ C

}
Propose definitions for addition and scalar multiplication in V . Identify the zero vector in V , and check that every
matrix has an additive inverse.



5. Let PR
3 be the set of polynomials with real coefficients of degree three or less.

• Propose a definition of addition and scalar multiplication to make PR
3 a vector space.

• Identify the zero vector, and find the additive inverse for the vector −3− 2x+ x2.

• Show that PR
3 is not a vector space over C. Propose a small change to the definition of PR

3 to make it a vector
space over C.

Problem 5 hint

http://math.ucdavis.edu/~linear/videos/vector_spaces_hint.mp4


7 Problems: Linear Transformations

1. Show that the pair of conditions:

(i) L(u+ v) = L(u) + L(v)

(ii) L(cv) = cL(v)

is equivalent to the single condition:

(iii) L(ru+ sv) = rL(u) + sL(v) .

Your answer should have two parts. Show that (i,ii)⇒(iii), and then show that (iii)⇒(i,ii).



2. Let Pn be the space of polynomials of degree n or less in the variable t. Suppose L is a linear transformation from
P2 → P3 such that L(1) = 4, L(t) = t3, and L(t2) = t− 1.

• Find L(1 + t+ 2t2).

• Find L(a+ bt+ ct2).

• Find all values a, b, c such that L(a+ bt+ ct2) = 1 + 3t+ 2t3.

Hint

http://math.ucdavis.edu/~linear/videos/linear_transformations_hint.mp4


3. Show that integration is a linear transformation on the vector space of polynomials. What would a matrix for
integration look like? Be sure to think about what to do with the constant of integration.

Finite degree example

http://math.ucdavis.edu/~linear/videos/linear_transformations_deriv_int


8 Problems: Matrices

1. Compute the following matrix products

1 2 1

4 5 2

7 8 2


−2 4

3 − 1
3

2 − 5
3

2
3

−1 2 −1

 ,
(
1 2 3 4 5

)


1

2

3

4

5

 ,


1

2

3

4

5


(
1 2 3 4 5

)
,

1 2 1

4 5 2

7 8 2


−2 4

3 − 1
3

2 − 5
3

2
3

−1 2 −1


1 2 1

4 5 2

7 8 2

 ,

(
x y z

)2 1 1
1 2 1
1 1 2


xy
z

 ,


2 1 2 1 2

0 2 1 2 1

0 1 2 1 2

0 2 1 2 1

0 0 0 0 2




1 2 1 2 1

0 1 2 1 2

0 2 1 2 1

0 1 2 1 2

0 0 0 0 1

 ,

−2 4
3 − 1

3

2 − 5
3

2
3

−1 2 −1


 4 2

3 − 2
3

6 5
3 − 2

3

12 − 16
3

10
3


1 2 1

4 5 2

7 8 2

 .



2. Let’s prove the theorem (MN)T = NTMT .

Note: the following is a common technique for proving matrix identities.

(a) Let M = (mi
j) and let N = (nij). Write out a few of the entries of each matrix in the form given at the

beginning of this chapter.

(b) Multiply out MN and write out a few of its entries in the same form as in part a. In terms of the entries of
M and the entries of N , what is the entry in row i and column j of MN?

(c) Take the transpose (MN)T and write out a few of its entries in the same form as in part a. In terms of the
entries of M and the entries of N , what is the entry in row i and column j of (MN)T ?

(d) Take the transposes NT and MT and write out a few of their entries in the same form as in part a.

(e) Multiply out NTMT and write out a few of its entries in the same form as in part a. In terms of the entries
of M and the entries of N , what is the entry in row i and column j of NTMT ?

(f) Show that the answers you got in parts c and e are the same.



3. Let M be any m × n matrix. Show that MTM and MMT are symmetric. (Hint: use the result of the previous
problem.) What are their sizes?



4. Let x =

x1...
xn

 and y =

y1...
yn

 be column vectors. Show that the dot product x y = xT 1 y.



5. Above, we showed that left multiplication by an r × s matrix N was a linear transformation Ms
k

N−→ Mr
k . Show

that right multiplication by a k ×m matrix R is a linear transformation Ms
k

R−→ Ms
m. In other words, show that

right matrix multiplication obeys linearity.

Problem hint

http://math.ucdavis.edu/~linear/videos/matrices_hint.mp4


6. Explain what happens to a matrix when:

(a) You multiply it on the left by a diagonal matrix.

(b) You multiply it on the right by a diagonal matrix.

Give a few simple examples before you start explaining.



9 Problems: Properties of Matrices

1. Let A =

(
1 2 0
3 −1 4

)
. Find AAT and ATA. What can you say about matrices MMT and MTM in general?

Explain.



2. Compute exp(A) for the following matrices:

• A =

(
λ 0
0 λ

)
• A =

(
1 λ
0 1

)
• A =

(
0 λ
0 0

)

Hint

http://math.ucdavis.edu/~linear/videos/properties_of_matrices_exponents.mp4


3. Suppose ad− bc 6= 0, and let M =

(
a b
c d

)
.

(a) Find a matrix M−1 such that MM−1 = I.

(b) Explain why your result explains what you found in a previous homework exercise.

(c) Compute M−1M .



4. Let M =



1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 2 1 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 3 1
0 0 0 0 0 0 0 3


. Divide M into named blocks, and then multiply blocks to compute M2.



10 Problems: Inverse Matrix

1. Find formulas for the inverses of the following matrices, when they are not singular:

(a)

1 a b
0 1 c
0 0 1


(b)

a b c
0 d e
0 0 f


When are these matrices singular?



2. Write down all 2 × 2 bit matrices and decide which of them are singular. For those which are not singular, pair
them with their inverse.



3. Let M be a square matrix. Explain why the following statements are equivalent:

(a) MX = V has a unique solution for every column vector V .

(b) M is non-singular.

(In general for problems like this, think about the key words:

First, suppose that there is some column vector V such that the equation MX = V has two distinct solutions.
Show that M must be singular; that is, show that M can have no inverse.

Next, suppose that there is some column vector V such that the equation MX = V has no solutions. Show that
M must be singular.

Finally, suppose that M is non-singular. Show that no matter what the column vector V is, there is a unique
solution to MX = V.)

Hints for Problem 3

http://math.ucdavis.edu/~linear/videos/inverse_matrix_unique_solution.mp4


4. Left and Right Inverses: So far we have only talked about inverses of square matrices. This problem will explore
the notion of a left and right inverse for a matrix that is not square. Let

A =

(
0 1 1
1 1 0

)
(a) Compute:

i. AAT ,

ii.
(
AAT

)−1
,

iii. B := AT
(
AAT

)−1
(b) Show that the matrix B above is a right inverse for A, i.e., verify that

AB = I .

(c) Does BA make sense? (Why not?)

(d) Let A be an n×m matrix with n > m. Suggest a formula for a left inverse C such that

CA = I

Hint: you may assume that ATA has an inverse.

(e) Test your proposal for a left inverse for the simple example

A =

(
1
2

)
,

(f) True or false: Left and right inverses are unique. If false give a counterexample.

Left and Right Inverses

http://math.ucdavis.edu/~linear/videos/inverse_matrix_hint.mp4


11 Problems: LU Decomposition

1. Consider the linear system:
x1 = v1

l21x
1 +x2 = v2

...
...

ln1x
1 +ln2x

2 + · · ·+ xn = vn

i. Find x1.

ii. Find x2.

iii. Find x3.

k. Try to find a formula for xk. Don’t worry about simplifying your answer.



2. Let M =

(
X Y
Z W

)
be a square n× n block matrix with W invertible.

i. If W has r rows, what size are X, Y , and Z?

ii. Find a UDL decomposition for M . In other words, fill in the stars in the following equation:(
X Y
Z W

)
=

(
I ∗
0 I

)(
∗ 0
0 ∗

)(
I 0
∗ I

)



12 Problems: Elementary Matrices and Determinants

1. Let M =

m1
1 m1

2 m1
3

m2
1 m2

2 m2
3

m3
1 m3

2 m3
3

. Use row operations to put M into row echelon form. For simplicity, assume that

m1
1 6= 0 6= m1

1m
2
2 −m2

1m
1
2.

Prove that M is non-singular if and only if:

m1
1m

2
2m

3
3 −m1

1m
2
3m

3
2 +m1

2m
2
3m

3
1 −m1

2m
2
1m

3
3 +m1

3m
2
1m

3
2 −m1

3m
2
2m

3
1 6= 0



2. (a) What does the matrix E1
2 =

(
0 1
1 0

)
do to M =

(
a b
d c

)
under left multiplication? What about right

multiplication?

(b) Find elementary matrices R1(λ) and R2(λ) that respectively multiply rows 1 and 2 of M by λ but otherwise
leave M the same under left multiplication.

(c) Find a matrix S1
2(λ) that adds a multiple λ of row 2 to row 1 under left multiplication.



3. Let M be a matrix and SijM the same matrix with rows i and j switched. Explain every line of the series of

equations proving that detM = −det(SijM).



4. This problem is a “hands-on” look at why the property describing the parity of permutations is true.

The inversion number of a permutation σ is the number of pairs i < j such that σ(i) > σ(j); it’s the number of
“numbers that appear left of smaller numbers” in the permutation. For example, for the permutation ρ = [4, 2, 3, 1],
the inversion number is 5. The number 4 comes before 2, 3, and 1, and 2 and 3 both come before 1.

Given a permutation σ, we can make a new permutation τi,jσ by exchanging the ith and jth entries of σ.

(a) What is the inversion number of the permutation µ = [1, 2, 4, 3] that exchanges 4 and 3 and leaves everything
else alone? Is it an even or an odd permutation?

(b) What is the inversion number of the permutation ρ = [4, 2, 3, 1] that exchanges 1 and 4 and leaves everything
else alone? Is it an even or an odd permutation?

(c) What is the inversion number of the permutation τ1,3µ? Compare the parity1 of µ to the parity of τ1,3µ.

(d) What is the inversion number of the permutation τ2,4ρ? Compare the parity of ρ to the parity of τ2,4ρ.

(e) What is the inversion number of the permutation τ3,4ρ? Compare the parity of ρ to the parity of τ3,4ρ.

Problem 4 hints

5. (Extra credit) Here we will examine a (very) small set of the general properties about permutations and their
applications. In particular, we will show that one way to compute the sign of a permutation is by finding the
inversion number N of σ and we have

sgn(σ) = (−1)N .

For this problem, let µ = [1, 2, 4, 3].

(a) Show that every permutation σ can be sorted by only taking simple (adjacent) transpositions si where si
interchanges the numbers in position i and i + 1 of a permutation σ (in our other notation si = τi,i+1). For
example s2µ = [1, 4, 2, 3], and to sort µ we have s3µ = [1, 2, 3, 4].

(b) We can compose simple transpositions together to represent a permutation (note that the sequence of compo-
sitions is not unique), and these are associative, we have an identity (the trivial permutation where the list is in
order or we do nothing on our list), and we have an inverse since it is clear that sisiσ = σ. Thus permutations
of [n] under composition are an example of a group. However note that not all simple transpositions commute
with each other since

s1s2[1, 2, 3] = s1[1, 3, 2] = [3, 1, 2]

s2s1[1, 2, 3] = s2[2, 1, 3] = [2, 3, 1]

(you will prove here when simple transpositions commute). When we consider our initial permutation to be
the trivial permutation e = [1, 2, . . . , n], we do not write it; for example si ≡ sie and µ = s3 ≡ s3e. This is
analogous to not writing 1 when multiplying. Show that sisi = e (in shorthand s2i = e), si+1sisi+1 = sisi+1si
for all i, and si and sj commute for all |i− j| ≥ 2.

(c) Show that every way of expressing σ can be obtained from using the relations proved in part 5b. In other
words, show that for any expression w of simple transpositions representing the trivial permutation e, using
the proved relations.

Hint: Use induction on n. For the induction step, follow the path of the (n + 1)-th strand by looking at
snsn−1 · · · sksk±1 · · · sn and argue why you can write this as a subexpression for any expression of e. Consider
using diagrams of these paths to help.

1The parity of an integer refers to whether the integer is even or odd. Here the parity of a permutation µ refers to the parity of its inversion
number.

http://math.ucdavis.edu/~linear/videos/elementary_matrices_determinants_hint


(d) The simple transpositions acts on an n-dimensional vector space V by siv = Eii+1v (where Eij is an elementary

matrix) for all vectors v ∈ V . Therefore we can just represent a permutation σ as the matrix Mσ
2, and we have

det(Msi) = det(Eii+1) = −1. Thus prove that det(Mσ) = (−1)N where N is a number of simple transpositions
needed to represent σ as a permutation. You can assume that Msisj = MsiMsj (it is not hard to prove) and
that det(AB) = det(A) det(B) from Chapter ??.

Hint: You to make sure det(Mσ) is well-defined since there are infinite ways to represent σ as simple transpo-
sitions.

(e) Show that si+1sisi+1 = τi,i+2, and so give one way of writing τi,j in terms of simple transpositions? Is τi,j an
even or an odd permutation? What is det(Mτi,j )? What is the inversion number of τi,j?

(f) The minimal number of simple transpositions needed to express σ is called the length of σ; for example the
length of µ is 1 since µ = s3. Show that the length of σ is equal to the inversion number of σ.

Hint: Find an procedure which gives you a new permutation σ′ where σ = siσ
′ for some i and the inversion

number for σ′ is 1 less than the inversion number for σ.

(g) Show that (−1)N = sgn(σ) = det(Mσ), where σ is a permutation with N inversions. Note that this immediately
implies that sgn(σρ) = sgn(σ) sgn(ρ) for any permutations σ and ρ.

2Often people will just use σ for the matrix when the context is clear.



13 Problems: Elementary Matrices and Determinants II

1. Let M =

(
a b
c d

)
and N =

(
x y
z w

)
. Compute the following:

(a) detM .

(b) detN .

(c) det(MN).

(d) detM detN .

(e) det(M−1) assuming ad− bc 6= 0.

(f) det(MT )

(g) det(M + N) − (detM + detN). Is the determinant a linear transformation from square matrices to real
numbers? Explain.



2. Suppose M =

(
a b
c d

)
is invertible. Write M as a product of elementary row matrices times RREF(M).



3. Find the inverses of each of the elementary matrices, Eij , R
i(λ), Sij(λ). Make sure to show that the elementary

matrix times its inverse is actually the identity.



4. (Extra Credit) Let eij denote the matrix with a 1 in the i-th row and j-th column and 0’s everywhere else, and let
A be an arbitrary 2× 2 matrix. Compute det(A+ tI2), and what is first order term (the coefficient of t)? Can you
express your results in terms of tr(A)? What about the first order term in det(A + tIn) for any arbitrary n × n
matrix A in terms of tr(A)?

We note that the result of det(A+ tI2) is what is known as the characteristic polynomial from Chapter ?? and is a
polynomial in the variable t.

5. (Extra Credit: (Directional) Derivative of the Determinant) Notice that det : Mn → R where Mn is the vector space
of all n× n matrices, and so we can take directional derivatives of det. Let A be an arbitrary n× n matrix, and for
all i and j compute the following:

(a) limt→0(det(I2 + teij)− det(I2))/t

(b) limt→0(det(I3 + teij)− det(I3))/t

(c) limt→0(det(In + teij)− det(In))/t

(d) limt→0(det(In +At)− det(In))/t

(Recall that what you are calculating is the directional derivative in the eij and A directions.) Can you express your
results in terms of the trace function?

Hint: Use the results from Problem 4 and what you know about the derivatives of polynomials evaluated at 0.



14 Problems: Properties of the Determinant

1. Let M =

(
a b
c d

)
. Show:

detM =
1

2
(trM)2 − 1

2
tr(M2)

Suppose M is a 3× 3 matrix. Find and verify a similar formula for detM in terms of tr(M3), (trM)(tr(M2)), and
(trM)3.



2. Suppose M = LU is an LU decomposition. Explain how you would efficiently compute detM in this case.



3. In computer science, the complexity of an algorithm is computed (roughly) by counting the number of times a given
operation is performed. Suppose adding or subtracting any two numbers takes a seconds, and multiplying two
numbers takes m seconds. Then, for example, computing 2 · 6− 5 would take a+m seconds.



(a) How many additions and multiplications does it take to compute the determinant of a general 2× 2 matrix?

(b) Write a formula for the number of additions and multiplications it takes to compute the determinant of a
general n×n matrix using the definition of the determinant. Assume that finding and multiplying by the sign
of a permutation is free.

(c) How many additions and multiplications does it take to compute the determinant of a general 3×3 matrix using
expansion by minors? Assuming m = 2a, is this faster than computing the determinant from the definition?



15 Problems: Subspaces and Spanning Sets

1. (Subspace Theorem) Suppose that V is a vector space and that U ⊂ V is a subset of V . Show that

µu1 + νu2 ∈ U for all u1, u2 ∈ U, µ, ν ∈ R

implies that U is a subspace of V . (In other words, check all the vector space requirements for U .)



2. Let PR
3 be the vector space of polynomials of degree 3 or less in the variable x. Check whether

x− x3 ∈ span{x2, 2x+ x2, x+ x3}



3. Let U and W be subspaces of V . Are:

(a) U ∪W
(b) U ∩W

also subspaces? Explain why or why not. Draw examples in R3.

Hint

http://math.ucdavis.edu/~linear/videos/subspaces_and_spanning_sets_hint.tex


16 Problems: Linear Independence

1. Let Bn be the space of n× 1 bit-valued matrices (i.e., column vectors) over the field Z2 := Z/2Z. Remember that
this means that the coefficients in any linear combination can be only 0 or 1, with rules for adding and multiplying
coefficients given here.

(a) How many different vectors are there in Bn?

(b) Find a collection S of vectors that span B3 and are linearly independent. In other words, find a basis of B3.

(c) Write each other vector in B3 as a linear combination of the vectors in the set S that you chose.

(d) Would it be possible to span B3 with only two vectors?



2. Let ei be the vector in Rn with a 1 in the ith position and 0’s in every other position. Let v be an arbitrary vector
in Rn.

(a) Show that the collection {e1, . . . , en} is linearly independent.

(b) Demonstrate that v =
∑n
i=1(v ei)ei.

(c) The span{e1, . . . , en} is the same as what vector space?



17 Problems: Basis and Dimension

1. (a) Draw the collection of all unit vectors in R2.

(b) Let Sx =

{(
1
0

)
, x

}
, where x is a unit vector in R2. For which x is Sx a basis of R2?



2. Let Bn be the vector space of column vectors with bit entries 0, 1. Write down every basis for B1 and B2. How
many bases are there for B3? B4? Can you make a conjecture for the number of bases for Bn?

(Hint: You can build up a basis for Bn by choosing one vector at a time, such that the vector you choose is not
in the span of the previous vectors you’ve chosen. How many vectors are in the span of any one vector? Any two
vectors? How many vectors are in the span of any k vectors, for k ≤ n?)



3. Suppose that V is an n-dimensional vector space.

(a) Show that any n linearly independent vectors in V form a basis.

(Hint: Let {w1, . . . , wm} be a collection of n linearly independent vectors in V , and let {v1, . . . , vn} be a basis
for V . Apply the method of Lemma 19.2 to these two sets of vectors.)

(b) Show that any set of n vectors in V which span V forms a basis for V .

(Hint: Suppose that you have a set of n vectors which span V but do not form a basis. What must be true
about them? How could you get a basis from this set? Use Corollary 19.3 to derive a contradiction.)



4. Let S be a collection of vectors {v1, . . . , vn} in a vector space V . Show that if every vector w in V can be expressed
uniquely as a linear combination of vectors in S, then S is a basis of V . In other words: suppose that for every
vector w in V , there is exactly one set of constants c1, . . . , cn so that c1v1 + · · ·+ cnvn = w. Show that this means
that the set S is linearly independent and spans V . (This is the converse to the theorem in the lecture.)



5. Vectors are objects that you can add together; show that the set of all linear transformations mapping R3 → R is
itself a vector space. Find a basis for this vector space. Do you think your proof could be modified to work for
linear transformations Rn → R?

(Hint: Represent R3 as column vectors, and argue that a linear transformation T : R3 → R is just a row vector.)

(Hint: If you are stuck or just curious, look up “dual space.” )



18 Problems: Eigenvalues and Eigenvectors

1. Let M =

(
2 1
0 2

)
. Find all eigenvalues of M . Does M have two independent3 eigenvectors? Can M be diagonalized?

3Independence of vectors will be explained later; for now, think “not parallel”.



2. Consider L : R2 → R2 with L(x, y) = (x cos θ + y sin θ,−x sin θ + y cos θ).

(a) Write the matrix of L in the basis

(
1
0

)
,

(
0
1

)
.

(b) When θ 6= 0, explain how L acts on the plane. Draw a picture.

(c) Do you expect L to have invariant directions?

(d) Try to find real eigenvalues for L by solving the equation

L(v) = λv.

(e) Are there complex eigenvalues for L, assuming that i =
√
−1 exists?



3. Let L be the linear transformation L : R3 → R3 given by L(x, y, z) = (x+ y, x+ z, y+ z). Let ei be the vector with
a one in the ith position and zeros in all other positions.

(a) Find Lei for each i.

(b) Given a matrix M =

m1
1 m1

2 m1
3

m2
1 m2

2 m2
3

m3
1 m3

2 m3
3

, what can you say about Mei for each i?

(c) Find a 3× 3 matrix M representing L. Choose three nonzero vectors pointing in different directions and show
that Mv = Lv for each of your choices.

(d) Find the eigenvectors and eigenvalues of M.



19 Problems: Eigenvalues and Eigenvectors II

1. Explain why the characteristic polynomial of an n×n matrix has degree n. Make your explanation easy to read by
starting with some simple examples, and then use properties of the determinant to give a general explanation.



2. Compute the characteristic polynomial PM (λ) of the matrix M =

(
a b
c d

)
. Now, since we can evaluate polynomials

on square matrices, we can plug M into its characteristic polynomial and find the matrix PM (M). What do you
find from this computation? Does something similar hold for 3× 3 matrices? What about n× n matrices?



3. Discrete dynamical system. Let M be the matrix given by

M =

(
3 2
2 3

)
.

Given any vector v(0) =

(
x(0)
y(0)

)
, we can create an infinite sequence of vectors v(1), v(2), v(3), and so on using the

rule
v(t+ 1) = Mv(t) for all natural numbers t.

(This is known as a discrete dynamical system whose initial condition is v(0).)

(a) Find all eigenvectors and eigenvalues of M.

(b) Find all vectors v(0) such that
v(0) = v(1) = v(2) = v(3) = · · ·

(Such a vector is known as a fixed point of the dynamical system.)

(c) Find all vectors v(0) such that v(0), v(1), v(2), v(3), . . . all point in the same direction. (Any such vector
describes an invariant curve of the dynamical system.)



20 Problems: Diagonalization

1. Let Pn(t) be the vector space of polynomials of degree n or less, and d
dt : Pn(t) 7→ Pn−1(t) be the derivative operator.

Find the matrix of d
dt in the bases {1, t, . . . , tn} for Pn(t) and {1, t, . . . , tn−1} for Pn−1(t).

2. When writing a matrix for a linear transformation, we have seen that the choice of basis matters. In fact, even the
order of the basis matters!

• Write all possible reorderings of the standard basis {e1, e2, e3} for R3.

• Write each change of basis matrix between the standard basis {e1, e2, e3} and each of its reorderings. Make
as many observations as you can about these matrices: what are their entries? Do you notice anything about
how many of each type of entry appears in each row and column? What are their determinants? (Note: These
matrices are known as permutation matrices.)

• Given the linear transformation L(x, y, z) = (2y− z, 3x, 2z+ x+ y), write the matrix M for L in the standard
basis, and two other reorderings of the standard basis. How are these matrices related?



3. When is the 2× 2 matrix

(
a b
c d

)
diagonalizable? Include examples in your answer.



4. Show that similarity of matrices is an equivalence relation. (The definition of an equivalence relation is given in
Homework 0.)

http://webwork.math.ucdavis.edu/webwork2/LinearAlgebra/Homework0-Background/4/


5. Jordan form

• Can the matrix

(
λ 1
0 λ

)
be diagonalized? Either diagonalize it or explain why this is impossible.

• Can the matrix

λ 1 0
0 λ 1
0 0 λ

 be diagonalized? Either diagonalize it or explain why this is impossible.

• Can the n × n matrix



λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ


be diagonalized? Either diagonalize it or explain why this is

impossible.

Note: It turns out that every complex matrix is similar to a block matrix whose diagonal blocks look like
diagonal matrices or the ones above and whose off-diagonal blocks are all zero. This is called the Jordan form
of the matrix.



21 Problems: Orthonormal Bases

1. Let D =

(
λ1 0
0 λ2

)
.

(a) Write D in terms of the vectors e1 and e2, and their transposes.

(b) Suppose P =

(
a b
c d

)
is invertible. Show that D is similar to

M =
1

ad− bc

(
λ1ad− λ2bc −(λ1 − λ2)ab

(λ1 − λ2)cd −λ1bc+ λ2ad

)
.

(c) Suppose the vectors
(
a b

)
and

(
c d

)
are orthogonal. What can you say about M in this case? (Hint: think

about what MT is equal to.)



2. Suppose S = {v1, . . . , vn} is an orthogonal (not orthonormal) basis for Rn. Then we can write any vector v as
v =

∑
i c
ivi for some constants ci. Find a formula for the constants ci in terms of v and the vectors in S.



3. Let u, v be independent vectors in R3, and P = span{u, v} be the plane spanned by u and v.

(a) Is the vector v⊥ = v − u·v
u·uu in the plane P?

(b) What is the angle between v⊥ and u?

(c) Given your solution to the above, how can you find a third vector perpendicular to both u and v⊥?

(d) Construct an orthonormal basis for R3 from u and v.

(e) Test your abstract formulae starting with

u =
(
1 2 0

)
and v =

(
0 1 1

)
.



22 Problems: Gram-Schmidt and Orthogonal Complements

1. Find the QR factorization of

M =

 1 0 2
−1 2 0
−1 −2 2

 .



2. Suppose u and v are linearly independent. Show that u and v⊥ are also linearly independent. Explain why {u, v⊥}
are a basis for span{u, v}.



3. Repeat the previous problem, but with three independent vectors u, v, w, and v⊥ and w⊥ as defined in the lecture.



4. Given any three vectors u, v, w, when do v⊥ or w⊥ vanish?



5. For U a subspace of W , use the subspace theorem to check that U⊥ is a subspace of W .



6. This question will answer the question, “If I choose a bit vector at random, what is the probability that it lies in
the span of some other vectors?”

i. Given a collection S of k bit vectors in B3, consider the bit matrix M whose columns are the vectors in S.
Show that S is linearly independent if and only if the kernel of M is trivial.

ii. Give some method for choosing a random bit vector v in B3. Suppose S is a collection of 2 linearly independent
bit vectors in B3. How can we tell whether S∪{v} is linearly independent? Do you think it is likely or unlikely
that S ∪ {v} is linearly independent? Explain your reasoning.

iii. If P is the characteristic polynomial of a 3 × 3 bit matrix, what must the degree of P be? Given that
each coefficient must be either 0 or 1, how many possibilities are there for P? How many of these possible
characteristic polynomials have 0 as a root? If M is a 3×3 bit matrix chosen at random, what is the probability
that it has 0 as an eigenvalue? (Assume that you are choosing a random matrix M in such a way as to make
each characteristic polynomial equally likely.) What is the probability that the columns of M form a basis for
B3? (Hint: what is the relationship between the kernel of M and its eigenvalues?)

Note: We could ask the same question for real vectors: If I choose a real vector at random, what is the probability
that it lies in the span of some other vectors? In fact, once we write down a reasonable way of choosing a
random real vector, if I choose a real vector in Rn at random, the probability that it lies in the span of n− 1
other real vectors is 0!



23 Problems: Diagonalizing Symmetric Matrices

1. (On Reality of Eigenvectors)

(a) Suppose z = x+ iy where x, y ∈ R, i =
√
−1, and z = x− iy. Compute zz and zz in terms of x and y. What

kind of numbers are zz and zz? (The complex number z is called the complex conjugate of z).

(b) Suppose that λ = x+ iy is a complex number with x, y ∈ R, and that λ = λ. Does this determine the value of
x or y? What kind of number must λ be?

(c) Let x =

z
1

...
zn

 ∈ Cn. Let x† =
(
z1 · · · zn

)
∈ Cn. Compute x†x. Using the result of part 1a, what can you

say about the number x†x? (E.g., is it real, imaginary, positive, negative, etc.)

(d) Suppose M = MT is an n×n symmetric matrix with real entries. Let λ be an eigenvalue of M with eigenvector
x, so Mx = λx. Compute:

x†Mx

x†x

(e) Suppose Λ is a 1× 1 matrix. What is ΛT ?

(f) What is the size of the matrix x†Mx?

(g) For any matrix (or vector) N , we can compute N by applying complex conjugation to each entry of N .

Compute (x†)T . Then compute (x†Mx)T .

(h) Show that λ = λ. Using the result of a previous part of this problem, what does this say about λ?



2. Let x1 =

ab
c

, where a2 + b2 + c2 = 1. Find vectors x2 and x3 such that {x1, x2, x3} is an orthonormal basis for

R3.



3. (Dimensions of Eigenspaces)

(a) Let A =

4 0 0
0 2 −2
0 −2 2

 . Find all eigenvalues of A.

(b) Find a basis for each eigenspace of A. What is the sum of the dimensions of the eigenspaces of A?

(c) Based on your answer to the previous part, guess a formula for the sum of the dimensions of the eigenspaces
of a real n× n symmetric matrix. Explain why your formula must work for any real n × n symmetric matrix.



24 Problems: Kernel, Range, Nullity, Rank

1. Let L : V →W be a linear transformation. Show that kerL = {0V } if and only if L is one-to-one:

(a) First, suppose that kerL = {0V }. Show that L is one-to-one. Think about methods of proof–does a proof by
contradiction, a proof by induction, or a direct proof seem most appropriate?

(b) Now, suppose that L is one-to-one. Show that kerL = {0V }. That is, show that 0V is in kerL, and then show
that there are no other vectors in kerL.



2. Let {v1, . . . , vn} be a basis for V . Explain why

L(V ) = span{L(v1), . . . , L(vn)}.



3. Suppose L : R4 → R3 whose matrix M in the standard basis is row equivalent to the following matrix:1 0 0 −1
0 1 0 1
0 0 1 1

 .

Explain why the first three columns of the original matrix M form a basis for L(R4).
Find and describe and algorithm (i.e. a general procedure) for finding a basis for L(Rn) when L : Rn → Rm.
Finally, use your algorithm to find a basis for L(R4) when L : R4 → R3 is the linear transformation whose matrix
M in the standard basis is 2 1 1 4

0 1 0 5
4 1 1 6

 .



4. Claim: If {v1, . . . , vn} is a basis for kerL, where L : V →W , then it is always possible to extend this set to a basis
for V .

Choose a simple yet non-trivial linear transformation with a non-trivial kernel and verify the above claim for the
transformation you choose.



5. Let Pn(x) be the space of polynomials in x of degree less than or equal to n, and consider the derivative operator
∂
∂x . Find the dimension of the kernel and image of ∂

∂x .

Now, consider P2(x, y), the space of polynomials of degree two or less in x and y. (Recall that xy is degree two, y is
degree one and x2y is degree three, for example.) Let L = ∂

∂x+ ∂
∂y . (For example, L(xy) = ∂

∂x (xy)+ ∂
∂y (xy) = y+x.)

Find a basis for the kernel of L. Verify the dimension formula in this case.



25 Problems: Least Squares

1. Let L : U → V be a linear transformation. Suppose v ∈ L(U) and you have found a vector ups that obeys
L(ups) = v.

Explain why you need to compute kerL to describe the solution space of the linear system L(u) = v.



2. Suppose that M is an m× n matrix with trivial kernel. Show that for any vectors u and v in Rm:

• uTMTMv = vTMTMu

• vTMTMv ≥ 0.

• If vTMTMv = 0, then v = 0.

(Hint: Think about the dot product in Rn.)
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