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Abstract

Gaussian random polytopes have received a lot of attention, especially in the case where
the dimension is fixed and the number of points goes to infinity. Our focus is on the
less-studied case where the dimension goes to infinity and the number of points is
proportional to the dimension d. We study several natural quantities associated with
Gaussian random polytopes in this setting. First, we show that the expected number of
facets is equal to C(α)d+o(d), where C(α) is some constant which depends on the con-
stant of proportionality α. We also extend this result to the expected number of k-facets.
We then consider the more difficult problem of the asymptotics of the expected number
of pairs of estranged facets of a Gaussian random polytope. When the number of points
is 2d, we determine the constant C such that the expected number of pairs of estranged
facets is equal to Cd+o(d).
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1. Introduction

A Gaussian random point set is an independent and identically distributed (i.i.d.) sequence
of standard Gaussian random points in R

d, i.e. each point in the set is distributed according
to N(0, Id). The convex hull of a Gaussian random point set {X1, . . . , Xn} with n samples is
denoted by [X1, . . . , Xn] and is called a Gaussian random polytope. In the study of random
polytopes given as the convex hull of random points, many asymptotic results provide insight
in the case where the dimension (d) is fixed but arbitrary and the number of points (n) grows.
For example, some of the basic results provide asymptotic expansions on the number of j-
dimensional faces of a Gaussian random polytope for fixed d and as n → ∞ [1, 4, 15, 24, 25].
For the case where both the dimension and the number of points grow together, there are gaps
in our understanding. In this work we study this case. We provide asymptotic expansions of the
expectation of several natural quantities associated with Gaussian random polytopes and, more
generally, Gaussian random point sets. The quantities we consider are the number of facets,
the number of k-facets, and the number of pairs of estranged facets. We now recall the standard
definitions of k-facets and estranged facets.
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2 B. LEROUX AND L. RADEMACHER

A k-facet of a finite set of points X ⊂R
d in general position (namely, any subset of d + 1

or less points is affinely independent) is a subset � ⊂ X of size d such that the open halfspace
on one side of aff � contains exactly k points from X. We use the notation Ek(X) for the set
of k-facets of X and we define ek(X) := |Ek(X)|. There is a long line of work on the k-facet
problem which requires determination of the asymptotics of the maximum possible number of
k-facets of a set of n points in R

d as a function of n, k, and d. The first papers on the k-facet
problem ([13] and [20]) only considered the case when the dimension is equal to two, and even
this case is still not well understood. See [29] for a survey on what is known. Although the
majority of work on the k-facet problem is for deterministic point sets, the problem has also
previously been studied for random point sets in [2, 11, 18].

Let P be a full-dimensional polytope. We use the notation fj(P) for the number of j-
dimensional faces of P. In particular, fd−1(P) is the number of facets. Note that if X ⊂R

d

is a set of n points in general position, then the 0-facets of X are precisely the facets of the
polytope P where P is the convex hull of X, so fd−1(P) = e0(X) in this case.

A pair of facets of a polytope is called estranged if they do not share any vertices (i.e. facets
F and G are estranged if the set of vertices contained in F is disjoint from the set of vertices
contained in G). Estranged pairs of facets of a polytope also have an interesting interpretation
if we take the polar of the original polytope. Since in this discussion we only care about the
combinatorics of faces of full-dimensional polytopes, when we say polar we mean the polar
with respect to any interior point. In this paper all the polytopes we consider are simplicial
with probability 1. The polar of a simplicial polytope is a simple polytope and there is a one-
to-one correspondence between pairs of estranged facets of the simplicial polytope P and inner
diagonals of the polar P∗ of P. Here, an inner diagonal of a polytope is a line segment which
joins two vertices of the polytope and that is contained, except for its endpoints, in the relative
interior of the polytope. We clarify the motivation for studying estranged facets and inner
diagonals in the next section.

1.1. Previous work and our contributions

1.1.1. Expected number of facets and k-facets. Let [X] denote the convex hull of X.
As previously mentioned, an asymptotic formula for the expected number of facets of a

Gaussian random polytope for fixed dimension as the number of samples n goes to infinity has
been known for some time. It was shown in [24, 25] that, for fixed d ≥ 2 and a set {X1, . . . , Xn}
of n i.i.d. Gaussian random points in R

d,

Efd−1([X1, . . . , Xn]) = 2dπ (d−1)/2

√
d

( ln n)(d−1)/2(1 + o(1))

as n → ∞. Similar formulae are known for Efj([X1, . . . , Xn]) for j = 0, . . . , d [1, 4, 15].
The above-mentioned papers only address the case when the dimension is fixed and the

number of samples goes to infinity. More recently, progress has been made in [7] and in [14]
on the question of the asymptotic value of Efd−1([X1, . . . , Xn]) when both d and n are allowed
to go to infinity. It is shown in [7, Theorem 1.1] that if d ≥ 78 and n ≥ eed, then

Efd−1([X1, . . . , Xn]) = 2dπ (d−1)/2d−1/2 × exp

{
d − 1

2
lln

n

d
− d − 1

4

lln (n/d)

ln (n/d)

+ (d − 1)
�

ln (n/d)
+ O(

√
de−d/10)

}
(1)
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with � ∈ [−34, 2] and lln = log log. Also, [7, Theorem 1.3] states that if n − d = o(d), then

Efd−1([X1, . . . , Xn]) =
(

n

d

)
1

2n−d−1
exp

{
1

π

(n − d)2

d
+ O

(
(n − d)3

d2

)
+ o(1)

}
. (2)

There are two gaps relevant to us in their expressions: (i) they only provide asymptotic
expressions for n − d = o(d) or n ≥ eed; (ii) for the case where n grows proportional to d,
they only establish exponential upper and lower bounds (with different bases of the exponen-
tial function in each bound). Indeed, in the case where n/d → α > 1, (1) gives exponential
upper and lower bounds for Efd−1([X1, . . . , Xn]). But because of the parameter �, (1) does
not determine the constant C(α) such that Efd−1([X1, . . . , Xn]) = C(α)d+o(d). Our Theorem 2
fills in this missing piece. We show that when n/d → α > 1 and k/(n − d) → r ∈ [0, 1] then the
expected number of k-facets grows like C(α, r)d+o(d), where C(α, r) is a constant depending
on α and r, and we provide a simple way to determine C(α, r) given α and r (Theorem 2). Note
that setting k = 0 gives the asymptotics of the expected number of facets Efd−1([X1, . . . , Xn]).
We remark that (1) is also valid when n/d → ∞, and that it gives more accurate estimates
for Efd−1([X1, . . . , Xn]) when n grows exponentially with d than it does for the case where
n/d → α [7]. We do not consider the exponential growth case in this work.

The convex hull of random points from the unit sphere in R
d was considered in [6], call-

ing such polytopes spherical random polytopes and providing asymptotic expressions for the
expected number of facets as n and d grow at different rates. In the cases when n − d = o(d)
or n/d → ∞ and log n/d → 0, formulae were obtained for the expected number of facets of
spherical random polytopes which match the corresponding formulae obtained in [7] for the
expected number of facets of Gaussian random polytopes, i.e. (1) and (2). Such a correspon-
dence is not particularly surprising given the fact that Gaussian random points concentrate
around a thin spherical shell of radius

√
d in high dimension. Our result shows that this cor-

respondence continues for the case when n is proportional to d: for any α > 1, Theorem 2
says that the expected number of facets of a Gaussian random polytope with n ∼ αd vertices
is equal to C(α)d+o(d) for some constant C(α). For spherical random polytopes, the case when
the number of vertices is equal to n ∼ αd for some α > 1 is dealt with in [6, Theorem 4.2]. The
asymptotic formula given there is also of the form C(α)d+o(d) for some constant C(α). Some
algebra shows that the constants are the same in both the spherical and Gaussian random cases.

1.1.2. A formula from [15] extended to k-facets. A formula is provided in [15, Theorem 3.2]
that expresses the probability that a fixed subset of d out of n Gaussian random points form a
facet of the convex hull of the whole set. The formula turns the original probability involving
n random vectors in R

d into a simpler probability involving n − d + 1 real-valued random
variables. The proof there is an application of the affine Blaschke–Petkantschin formula.

We extend the formula to the case of k-facets (Theorem 1). Our proof does not use the
Blaschke–Petkantschin formula and is based on a slightly different probabilistic argument.

1.1.3. Expected number of pairs of estranged facets. We show in Theorem 3 that if X is a set of
2d i.i.d. Gaussian random points in R

d, then the expected number of pairs of estranged facets
of [X] is equal to Cd+o(d), where C ≈ 1.7696.

The main technique in the proof is the affine Blaschke–Petkantschin formula applied twice
on a partition of the 2d points into two d-subsets to express the probability that they are facets
simultaneously. This is combined with known estimates of the expected volume of a random
simplex (one of the main terms in the affine Blaschke–Petkantschin formula) and a simple
asymptotic expansion of integrals (Proposition 4).
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4 B. LEROUX AND L. RADEMACHER

To put this result in context, we recall the following conjecture.

Conjecture 1. (von Stengel [28].) The maximum number of pairs of estranged facets of any
simplicial d-polytope with 2d vertices is 2d−1, which is attained by the d-dimensional cross
polytope.

Although von Stengel’s conjecture is still open, a number of similar questions about
estranged facets (and their polar equivalent, inner diagonals) were answered in [10], which
argued that estranged facets are worthy of more study given that they are an intrinsically
interesting combinatorial feature of convex polytopes.

Aside from their intrinsic interest, estranged facets are also relevant to the study of Nash
equilibria of bimatrix games [28]. Indeed, this was the original context for von Stengel’s
conjecture. Although estranged facets themselves do not directly correspond to any particular
quantity of interest in bimatrix games, they have been used in [3] in the analysis of a Las Vegas
algorithm for finding Nash equilibria in bimatrix games. In particular, the analysis required the
determination of concentration bounds for the number of Nash equilibria in random games.
This in turn required proof of an upper bound on the expected number of pairs of estranged
facets of a random polytope whose vertices are either i.i.d. Gaussian or uniform in the d-cube
[3, Lemma 13]. In contrast to our Theorem 3, [3, Lemma 13] is only meaningful in the case
when the dimension d is fixed and the number of points n goes to infinity.

Finally, we remark that estranged facets are also relevant to the study of the diameter prob-
lem for convex polytopes, i.e. the question of the maximum diameter of the graph of a simple
d-polytope with n facets. As previously mentioned, estranged facets of a simplicial polytope
correspond, via the polar operation, to inner diagonals of a simple polytope. It has been shown
that for any n and d such that n ≥ 2d, the maximum diameter over all simple d-polytopes with
n facets is attained by the distance between two vertices which form an inner diagonal of one
such polytope [17, Theorem 2.8].

1.1.4. Simple asymptotic expansion of integrals. Our asymptotic expansions of expected val-
ues are based on the formula

∫
Rd f (x)p dx = ‖f ‖p+o(p)∞ , stated formally as Proposition 4. This is

a simple result that provides asymptotic expansions of integrals and follows immediately from
the known fact that the Lp norm of a function converges to the L∞ norm as p → ∞ under mild
assumptions (Proposition 3). We remark that Proposition 4 is tailored to the specific asymptotic
regime that we consider, i.e. when the number of vertices n grows linearly with the dimension
d. It is not immediately useful when considering slower or faster regimes.

1.2. Outline of the paper

Section 2 introduces our notation and collects some propositions that will be used later,
including a result about the expected volume of a Gaussian simplex as well as a result about
asymptotic expansions of integrals based on Lp norms. In Section 3 we establish our asymptotic
formula for the expected number of k-facets of a Gaussian random polytope. Finally, Section 4
establishes the asymptotic formula for the expected number of estranged facets of a Gaussian
random polytope with 2d vertices.

2. Preliminaries

Let fX denote the probability density function (PDF) of random variable X. Let
EX (f (X, Y)) denote the expectation with respect to X only, and similarly for PX . Namely,
EX (f (X, Y)) =E (f (X, Y) | Y). For a random vector X, let cov (X) denote the covariance matrix

https://doi.org/10.1017/jpr.2024.114 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.114


Estranged facets and k-facets of Gaussian random point sets 5

of X. The asymptotic notation f (d) ∼ g(d) means f (d)/g(d) → 1 as d → ∞. For a set A in a
measurable space, let 1A denote the indicator function of A. For a measurable set K ⊆R

d, let
|K| denote the volume of K. Let [X] denote the convex hull of X. Let ωd = 2πd/2/�(d/2) be
the (d − 1)-dimensional volume of the unit sphere in R

d. The binary entropy function H is
defined on (0,1) by H(p) = −p log2 (p) − (1 − p) log2 (1 − p) and H(0) = H(1) = 0.

We will need the following characterization of the shortest vector in an affine hull.

Lemma 1. Given linearly independent vectors p1, p2, . . . , pd ∈R
d, the shortest vector in their

affine hull is v = P−11/‖P−11‖2, where P = (p1 · · · pd). In particular, ‖v‖ = 1/‖P−11‖.

Proof. From [19, Lemma 1.2], the shortest vector in the affine hull, v, satisfies Pv = ‖v‖21.
Since P is full rank, v = ‖v‖2P−11. Compute norms of the vectors in this equation to get
‖v‖ = 1/‖P−11‖. The claim follows. �

We will also need the following formula that relates the second moment of the volume of a
random simplex with the determinant of the covariance matrix of the underlying distribution.

Proposition 1. (Blaschke’s formula, [9, Proposition 3.5.5], [23, Lemma 4].) Let X1, . . . , Xd+1
be i.i.d. d-dimensional random vectors with finite second moment. Then det cov (X1) =
(d!/(d + 1)) E (|[X1, . . . , Xd+1]|2).

Proof. [23, Lemma 4] states and proves the claim for the uniform distribution in a con-
vex body. That proof works essentially unchanged for any distribution with finite second
moment. �

We will need the following well-known result about the expected volume of a Gaussian
simplex (see, e.g., [22, p. 377]).

Proposition 2. Let X1, . . . , Xd+1 be i.i.d. d-dimensional Gaussian random vectors. Then

E (|[X1, . . . , Xd+1]|) =
√

d + 1

2d/2�((d/2) + 1)
∼ 1√

π

(
e

d

)d/2

.

We use the following asymptotic approximation of integrals:
∫
Rd f (x)p dx = ‖f ‖p+o(p)∞

(Proposition 4). It follows easily from the fact that the Lp norm converges to the L∞ norm
as p → ∞ under mild assumptions (Proposition 3).

Proposition 3. ([26, p. 71].) Let 1 ≤ q < ∞. Let f ∈ L∞(Rd) ∩ Lq(Rd). Then ‖f ‖∞ =
limp→∞ ‖f ‖p.

Proposition 4. Let 1 ≤ q < ∞. Let f ∈ L∞(Rd) ∩ Lq(Rd) and assume that f is nonnegative and
C := ‖f ‖∞ �= 1. Then, as p → ∞,

∫
Rd f (x)p dx = Cp+o(p) (where o(p) can depend on f).

Proof. Let ap = ∫
Rd f (x)p dx. From Proposition 3 we have limp→∞ a1/p

p = C. Write ap =
Cp+g(p) for some function g.

To conclude, we will now show that g(p) = o(p). Note that a1/p
p = C1+g(p)/p, so that,

applying limp→∞ to both sides, limp→∞ Cg(p)/p = 1, which implies limp→∞ (g(p)/p) = 0. �

We need the following known inequality (the constant has not been optimized).

Lemma 2. If X is a (real-valued) mean-zero logconcave random variable then E (|X|) ≥
1
8

√
E (X2).
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6 B. LEROUX AND L. RADEMACHER

Proof. The inequality is invariant under scaling and therefore it is enough to prove it when X
is isotropic (i.e. when E (X2) = 1). It is known [21, Lemma 5.5] that the density of an isotropic
logconcave random variable is at most 1. Therefore, using Markov’s inequality, 1

2 ≤ P
(|X| ≥

1
4

)≤ 4 E (|X|). The claim follows. �

3. Facets and k-facets

In this section we study the expected number of k-facets of Gaussian random polytopes. We
give an asymptotic formula for the expected number of k-facets in the case when the dimension
d goes to infinity and the number of samples n grows linearly with d.

Before establishing our asymptotic formula, we need to establish the following result which
reduces the problem of computing Eek({X1, . . . , Xn}) from a d-dimensional problem to a one-
dimensional problem.

Theorem 1. Let X1, . . . , Xn be n ≥ d + 1 i.i.d. standard Gaussian random vectors in R
d. Then

the expected number of k-facets of {X1, . . . , Xn} is equal to
(n

d

)
P(Y ∈ Ek({Y, Y1, . . . , Yn−d})),

where Y is N(0, 1/d), Yi is N(0, 1) for i = 1, . . . , n − d, and Y, Y1, . . . , Yn−d are independent.

Proof. By linearity of expectation and symmetry, it is enough to show that the probability
that {X1, . . . , Xd} is a k-facet is P(Y ∈ Ek({Y, Y1, . . . , Yn−d})).

Let V be a random unit vector perpendicular to aff{X1, . . . , Xd} but with its orientation
(sign) chosen independently at random between the two choices. Define Y = V · X1 and Yi =
V · Xi+d, i = 1, . . . , n − d. Using that V is independent of Xd+1, . . . , Xn, it is clear that the
Yi are i.i.d. N(0,1). Moreover, notice that, by symmetry, the distribution of V conditioned on
Y is still uniform on the unit sphere. That is, V is independent of Y , which implies that Y is
independent of Y1, . . . , Yn−d.

We now determine the distribution of Y . Note that Y2 is the squared distance of aff{X1, . . . ,
Xd} from the origin. From Lemma 1, the squared distance of aff{X1, . . . , Xd} from the origin
is given by 1/‖A−11‖2, where A is the matrix having X1, . . . , Xd as rows. By the invariance
under orthogonal transformations of the distribution of A, the distribution of A−1 is also invari-
ant under orthogonal transformations and the distribution of 1/‖A−11‖2 is the same as the
distribution of 1/d‖A−1e1‖2. In this expression, 1/‖A−1e1‖2 is the squared length of the first
column of A−1, which is equal to the squared distance between X1 and span{X2, . . . , Xd} by
the definition of inverse matrix. This is distributed as χ2

1 or, in other words, N(0,1) squared.
Thus, using the random sign of V , the distribution of Y is N(0, 1/d).

In summary, Y and the Yi are distributed as in the statement. Moreover, the event that
{X1, . . . , Xd} is a k-facet of {X1, . . . , Xn} is the same as the event that Y is a k-facet of
{Y, Y1, . . . , Yn−d}. �

We remark that Theorem 1 is heavily inspired by [15]. In particular, Theorem 1 is a simple
generalization of [15, Theorem 3.2] from facets to k-facets. See [15, Theorem 3.2] for an
alternative proof of Theorem 1 (in the case of facets) using the affine Blaschke–Petkantschin
formula.

We are now ready to state our main result on facets/k-facets of Gaussian random polytopes.
We use the notation

	(y) := 1√
2π

∫ y

−∞
e−s2/2 ds, φ(y) := 	′(y) = 1√

2π
e−y2/2

for the cumulative distribution function and PDF of the standard Gaussian distribution.
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Theorem 2. Fix α > 1 and r ∈ [0, 1], and assume that n/d → α as d → ∞ and that k/(n −
d) → r as d → ∞. Let X be a set of n i.i.d. Gaussian random points in R

d. Then the expected
number of k-facets of X is equal to (2αH(1/α)2(α−1)H(r)

√
2πcα,r)d+o(d) as d → ∞, where cα,r :=

maxy∈R{	(y)r(α−1)(1 − 	(y))(1−r)(α−1)φ(y)} and H(r) is the binary entropy function. The rate
of convergence in the above o(d) is not universal as it depends on α and r, and on the rate of
convergence of n/d to α and k/(n − d) to r.

Proof. From Theorem 1, Eek(X) = (n
d

)
P(Y ∈ Ek({Y, Y1, . . . , Yn−d})) where Y is N(0, 1/d),

Yi is N(0,1) for i = 1, . . . , n − d, and Y, Y1, . . . , Yn−d are independent. Notice that if k �=
(n − d)/2, then

P(Y ∈ Ek({Y, Y1, . . . , Yn−d})) = 2

(
n − d

k

) √
d√

2π

∫ ∞

−∞
	(y)k(1 − 	(y))n−d−ke−dy2/2 dy.

If k = (n − d)/2, this formula counts each potential k-facet twice, because in this case each
side of the hyperplane represented by Y could contain exactly (n − d)/2 points. Therefore, if
k = (n − d)/2, the formula holds after removing the factor of two on the right-hand side. This
factor of two is not important for our result, and we have

Eek(X) = �(1)

(
n

d

)
P(Y ∈ Ek({Y, Y1, . . . , Yn−d}))

= �(1)

(
n

d

)(
n − d

k

) √
d√

2π

∫ ∞

−∞
	(y)k(1 − 	(y))n−d−ke−dy2/2 dy

= �(1)

(
n

d

)(
n − d

k

)√
d(2π )(d−1)/2

∫ ∞

−∞
	(y)k(1 − 	(y))n−d−kφ(y)d dy.

We will use Proposition 4 to estimate the integral in this expression. In particular, we
will show that the integral is equal to cd+o(d)

α,r , where cα,r := ‖f ‖∞ and f (y) := 	(y)r(α−1)(1 −
	(y))(1−r)(α−1)φ(y). In order to establish this estimate, we first need to restrict the integral
to some finite interval, the length of which does not depend on d but does depend on α, r.
In order to accomplish this, first observe that we can upper bound the terms in front of the
integral by

(n
d

)(n−d
k

)√
d(2π )(d−1)/2 = O(2n2n(2π )(d−1)/2) = O((4α

√
2π )d). Now choose R(α)

so that φ(R(α)) < 1/4α
√

2π . For technical reasons, we also need to assume that our region
of integration is big enough so that it contains some y0 ∈R such that cα,r = f (y0). So choose
R(α, r) such that R(α, r) ≥ R(α) and so that [−R(α, r), R(α, r)] contains y0 as above. Using the
fact that 	(y)k(1 − 	(y))n−d−k < 1 and φ(R(α, r)) < 1/4α

√
2π , we know that the right tail of

the integral is upper bounded by

∫ ∞

R(α,r)
	(y)k(1 − 	(y))n−d−kφ(y)d dy ≤

∫ ∞

R(α,r)
φ(y)d−1φ(y) dy

≤
(

1

4α
√

2π

)d−1 ∫ ∞

R(α,r)
φ(y) dy = O((4α

√
2π )−d),
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8 B. LEROUX AND L. RADEMACHER

and the same estimate holds for the left tail. Therefore,

Eek(X) = �(1)

(
n

d

)(
n − d

k

)√
d(2π )(d−1)/2

∫ ∞

−∞
	(y)k(1 − 	(y))n−d−kφ(y)d dy

= �(1)

(
n

d

)(
n − d

k

)√
d(2π )(d−1)/2

∫ R(α,r)

−R(α,r)
	(y)k(1 − 	(y))n−d−kφ(y)d dy + O(1)

= �(1)

(
n

d

)(
n − d

k

)√
d(2π )(d−1)/2

∫ R(α,r)

−R(α,r)
	(y)k(1 − 	(y))n−d−kφ(y)d dy,

where the last equality uses the fact that Eek(X) ≥ 1 so that the O(1) term can be absorbed into
the �(1) factor in front.

Now, for y ∈ [−R(α, r), R(α, r)], 	(y) and 1 − 	(y) both take values in some fixed interval,
i.e. 	(y) = �(1) and 1 − 	(y) = �(1). Recall that we are assuming that n/d → α and k/(n −
d) → r as d → ∞, which means that n = αd + o(d) and k = r(α − 1)d + o(d), and therefore
that n − d − k = (α − 1)d − r(α − 1)d + o(d). This means that 	(y)k = 	(y)r(α−1)d�(1)o(d) =
eo(d)	(y)r(α−1)d, and that (1 − 	(y))n−d−k = (1 − 	(y))(α−1)d−r(α−1)d�(1)o(d) = eo(d)(1 −
	(y))(α−1)d−r(α−1)d for y ∈ [−R(α, r), R(α, r)]. Therefore, we have shown that

∫ R(α,r)

−R(α,r)
	(y)k(1 − 	(y))n−d−kφ(y)d dy

= eo(d)
∫ R(α,r)

−R(α,r)
	(y)r(α−1)d(1 − 	(y))(1−r)(α−1)dφ(y)d dy.

Let f̂ := f · 1−R(α,r)<y<R(α,r). Define ĉα,r := ‖f̂ ‖∞. Recall that we are assuming that f attains
its maximum somewhere in the interval [−R(α, r), R(α, r)], so ĉα,r = cα,r.

By Proposition 4,

∫ R(α,r)

−R(α,r)
	(y)r(α−1)d(1 − 	(y))(1−r)(α−1)dφ(y)d dy = (ĉα,r)d+o(d) = (cα,r)d+o(d).

Combining everything,

Eek(X) = �(1)

(
n

d

)(
n − d

k

)√
d(2π )(d−1)/2

∫ R(α,r)

−R(α,r)
	(y)k(1 − 	(y))n−d−kφ(y)d dy

= �(1)

(
n

d

)(
n − d

k

)√
d(2π )(d−1)/2eo(d)(cα,r)d+o(d)

= (2αH(1/α)2(α−1)H(r)
√

2πcα,r)d+o(d).

In order to obtain the asymptotic estimates of the binomial coefficients as above, we can use
the fact that (1/(n + 1))2nH(d/n) ≤ (n

d

)≤ 2nH(d/n), which follows from Stirling’s approximation
[12, Example 11.1.3]. This, combined with the fact that d/n → 1/α and that the binary entropy
function H is continuous can be used to show that

(n
d

)= 2αdH(1/α)+o(d). A similar argument

applies to the asymptotic estimate of
(n−d

k

)
. �
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Estranged facets and k-facets of Gaussian random point sets 9

4. Estranged facets

We say that two facets of a polytope are estranged if they do not share any vertices. The
main result of this section is the following theorem, which gives an asymptotic estimate of the
expected number of estranged facets of the convex hull of 2d Gaussian random points in R

d.

Theorem 3. Let X be a set of 2d i.i.d. Gaussian random points in R
d. Let N be the number of

(unordered) pairs of estranged facets in [X]. Then E (N) = (4C4)d+o(d), where C4 ∈ (0, 1
2

)
is

the universal constant from Lemma 4.

Our proof uses the affine Blaschke–Petkantschin formula ((5), see also [27, Theorem
7.2.7]), a change of variable formula that involves the volume of a random simplex. We will
need the following estimate of the volume of a random simplex in a halfspace.

Lemma 3. Let H ⊆R
d−1 be a halfspace that contains the origin. Let Z1, . . . , Zd be i.i.d.

random vectors, each distributed as standard Gaussian truncated to be in H. Then

E (|[Z1, . . . , Zd]|) ≥
√

1 − 2

π

√
d

2(d+5)/2�((d + 1)/2)
=
(

e

d

)d/2

2o(d)

(where o(d) does not depend on H).

Proof. Let Z denote the (d − 1) × d matrix with columns Z1, . . . , Zd. The idea of the proof
is to compare Z with the Gaussian case (namely, without truncation). It is easier to do this for
the second moment instead of the first, and we can relate the first and the second moments via
Jensen’s inequality and a suitable reverse for our case, Lemma 2.

By applying a rotation, it is enough to prove the statement for H = {x ∈R
d−1 : x1 ≤ t} with

t ≥ 0. Let W be Z with a row of ones appended. Then

|[Z1, . . . , Zd]|/d = |det (W)|/d!. (3)

That is, |[Z1, . . . , Zd]| = |det (W)|/(d − 1)!. Let W1, . . . , Wd be the rows of W. Let A = {x ∈
R

d : for all i, xi ≤ t}. Note that W1 is distributed as standard Gaussian truncated to A. We
have |det (W)| =∏d

i=1 d (Wi, span W(i+1)...d) (where d (·, ·) denotes point-subspace distance
and Wa...b is shorthand notation for Wa, . . . , Wb) and

E (|det (W)|) =E

(
d (W1, span W2...d)

d∏
i=2

d (Wi, span W(i+1)...d)

)
(4)

=E

(
E ( d (W1, span W2...d) | W2...d

) d∏
i=2

d (Wi, span W(i+1)...d)

)
.

Let v ∈R
d be such that

∑d
i=1 vi = 0 and ‖v‖ = 1. Using Lemma 2, E (vW1) = 0, and the

fact that the variance of a Gaussian truncated to (−∞, t] with t ≥ 0 is at least 1 − 2/π , we get

E (|vW1|) ≥ 1

8

√
E ((vW1)2) = 1

8

√
var(vW1) ≥ 1

8

√
1 − 2

π
:= c′.

Now, to express d (W1, span W2...d), let V be a random vector that is a unit vector nor-
mal to span W2...d (sign will not matter) and let W ′

1 be an independent standard Gaussian in
R

d. We have the following comparison inequality between W1 (truncated Gaussian) and W ′
1
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10 B. LEROUX AND L. RADEMACHER

(not truncated), using moment inequalities and the fact that, conditioning on W2...d, vector V
is a fixed unit vector perpendicular to the all-ones vector Wd so that our analysis for v above
applies:

E ( d (W1, span W2...d) | W2...d) =E (|VW1| | W2...d) ≥ c′

= c′
√
E ( d (W ′

1, span W2...d)2 | W2...d)

≥ c′
E ( d (W ′

1, span W2...d) | W2...d).

This, in (4), implies, defining W ′ as W with the first row W1 substituted by W ′
1,

E (|det (W)|) ≥ c′
E

(
E ( d (W ′

1, span W2...d) | W2...d)
d∏

i=2

d (Wi, span W(i+1)...d)

)

= c′
E

(
d (W ′

1, span W2...d)
d∏

i=2

d (Wi, span W(i+1)...d)

)

= c′
E (|det (W ′)|)

= c′ (d − 1)!√d

2(d−1)/2�((d + 1)/2)
(using Proposition 2 and the idea in (3)).

Thus,

E (|[Z1, . . . , Zd]|) = E (|det (W)|)
(d − 1)! ≥ c′√d

2(d−1)/2�((d + 1)/2)
. �

We now complete the proof of Theorem 3. Most of the proof is in Lemma 4, which estimates
the probability that a fixed partition of the random points is a pair of facets. Theorem 3 then
follows by linearity of expectation. The proof of Lemma 4 is somewhat similar to the proof
of [16, Theorem 1.3], which gives an upper bound for the variance of the number of facets
of a Gaussian random polytope in the case where the dimension is fixed and the number of
points increases. The main difficulty in the proof of both [16, Theorem 1.3] and Lemma 4 is
to prove an upper bound on the probability that a partition of the vertices forms two facets. In
contrast to [16, Theorem 1.3], our Lemma 4 is meaningful when the dimension increases with
the number of points. However, Lemma 4 does not give any bound on the variance because we
only consider pairs of facets with no points in common.

Let F(P) be the set of facets (as a family of subsets of vertices) of polytope P.

Lemma 4. Let X,Y be two independent sequences of d i.i.d. Gaussian random points in R
d.

Then P(X, Y ∈ F([X, Y])) = Cd+o(d)
4 , where

C4 := sup
ρ≥0

w∈[−1,1]

e−ρ2
	

(
ρ(1 − w)√

1 − w2

)2√
1 − w2 ≈ 0.4424.
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Estranged facets and k-facets of Gaussian random point sets 11

Proof. For θ ∈ Sd−1 and ρ ∈R+, let H(ρ, θ ) = {x ∈R
d : θ · x = ρ}, H−(ρ, θ ) = {x ∈R

d : θ ·
x < ρ}, and H+(ρ, θ ) = {x ∈R

d : θ · x > ρ}. Let f denote the probability density function of
the standard d-dimensional Gaussian distribution.

We will use the following form of the affine Blaschke–Petkantschin formula (as stated in
[16, p. 302]; see also [27, Theorem 7.2.7]):∫

Rd
· · ·

∫
Rd

f (x1, . . . , xd) dx1 · · · dxd

= �(d)
∫
R+

∫
Sd−1

∫
H(ρ,θ)

· · ·
∫

H(ρ,θ)
f (x1, . . . , xd)

∣∣[{xi}d
i=1

]∣∣ dx1 · · · dxd dθ dρ, (5)

where we use the normalization
∫

Sd−1 dθ = ωd, and an integral over an affine hyperplane
H(ρ, θ ) ⊆R

d uses the (d − 1)-dimensional Lebesgue measure.
We have, using the Blaschke–Petkantschin formula (5) twice:

P(X, Y ∈ F([X, Y]))

=
∫
Rd2

∫
Rd2

1{xi}d
i=1,{yi}d

i=1∈F
([{xi,yi}d

i=1

]) d∏
i=1

f (xi) dxi

d∏
i=1

f (yi) dyi

= �(d)2
∫
R

2+

∫
(Sd−1)2

∫
H(ρ1,θ1)d

∫
H(ρ2,θ2)d

1{xi}d
i=1∈F

([{xi,yi}d
i=1

]) 1{yi}d
i=1∈F

([{xi,yi}d
i=1

])

× ∣∣[{xi}d
i=1

]∣∣ · ∣∣[{yi}d
i=1

]∣∣( d∏
i=1

f (xi) dxi

)(
d∏

i=1

f (yi) dyi

)
dθ1 dθ2 dρ1 dρ2.

Reordering terms,

P(X, Y ∈ F([X, Y]))

= �(d)2
∫
R

2+

∫
(Sd−1)2

(∫
H(ρ1,θ1)d

(
1{for all i, xi∈H+(ρ2,θ2)} + 1{for all i, xi∈H−(ρ2,θ2)}

)∣∣[{xi}d
i=1

]∣∣
d∏

i=1

f (xi) dxi

)

×
(∫

H(ρ2,θ2)d

(
1{for all i, yi∈H+(ρ1,θ1)} + 1{for all i, yi∈H−(ρ1,θ1)}

)∣∣[{yi}d
i=1

]∣∣
d∏

i=1

f (yi) dyi

)
dθ1 dθ2 dρ1 dρ2. (6)

Upper bound. For the upper bound we continue from (6) by rewriting it as a sum over four
cases. The four cases correspond to whether X is on the origin side of aff Y or not, and whether
Y is on the origin side of aff X or not:
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12 B. LEROUX AND L. RADEMACHER

FIGURE 1. Halfspaces in the proof of Lemma 4.

P(X, Y ∈ F([X, Y]))

= �(d)2
∑

s,s′∈{−,+}

∫
R

2+

∫
(Sd−1)2

(∫
H(ρ1,θ1)d

1{for all i, xi∈Hs(ρ2,θ2)}
∣∣[{xi}d

i=1

]∣∣ d∏
i=1

f (xi) dxi

)

×
(∫

H(ρ2,θ2)d
1{for all i, yi∈Hs′ (ρ1,θ1)}

∣∣[{yi}d
i=1

]∣∣ d∏
i=1

f (yi) dyi

)

dθ1 dθ2 dρ1 dρ2. (7)

The next step is to see that each innermost integral in (7) can be interpreted as the expected
volume of a random simplex with each vertex according to the Gaussian distribution truncated
to a halfspace in R

d−1 (this is up to a normalization constant to turn the integral into an expecta-
tion and after identifying H(ρ1, θ1) with R

d−1). An upper bound to that expectation will follow
immediately from the Brascamp–Lieb inequality. The following notation will be convenient.
Let Z = (Z1, . . . , Zd) ∈R

(d−1)×d be i.i.d. standard Gaussian. For the identification of H(ρ1, θ1)
with R

d−1, fix ρ1, θ1, and pick an isometry from H(ρ1, θ1) to R
d−1 that maps the minimum

Euclidean norm point to the origin. Also let hs(ρ1, θ1, ρ2, θ2) ⊆R
d−1 for s ∈ {+, −} denote the

image of the halfspace Hs(ρ2, θ2) ∩ H(ρ1, θ1) in R
d−1 via the isometry (see Figure 1). Finally,

E is the event {Z ∈ h−(ρ1, θ1, ρ2, θ2)d}, and μ is the standard Gaussian probability measure in
R

d−1.
We have

∫
H(ρ1,θ1)d

1{for all i, xi∈H−(ρ2,θ2)}
∣∣[{xi}d

i=1

]∣∣ d∏
i=1

f (xi) dxi

=
( ∫

H(ρ1,θ1)d

d∏
i=1

f (xi) dxi

)
EZ (|[Z1, . . . , Zd]| 1E ), (8)

https://doi.org/10.1017/jpr.2024.114 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.114


Estranged facets and k-facets of Gaussian random point sets 13

where ∫
H(ρ1,θ1)d

d∏
i=1

f (xi) dxi = e−dρ2
1/2

(2π )d/2
(9)

and

EZ (|[Z1, . . . , Zd]| 1E ) = PZ(E) EZ (|[Z1, . . . , Zd]| | E)

= (μ(h−(ρ1, θ1, ρ2, θ2)))d
EZ (|[Z1, . . . , Zd]| | E). (10)

We now find an upper bound on the last factor in (10). Let A be the covariance matrix of
the Gaussian distribution in R

d−1 truncated to h−(ρ1, θ1, ρ2, θ2). Namely, A = cov (Z1 | Z1 ∈
h−(ρ1, θ1, ρ2, θ2)). Note that the variance of any univariate marginal of Z1 conditioned on
Z1 ∈ h−(ρ1, θ1, ρ2, θ2) is at most 1 (say, by the Brascamp–Lieb inequality [8, Section 5]) and
this implies that det A ≤ 1. Using moment inequalities and Proposition 1 (Blaschke’s formula),

EZ (|[Z1, . . . , Zd]| | E) ≤
√
EZ (|[Z1, . . . , Zd]|2 | E) =

√
d

(d − 1)! det A ≤
√

d

(d − 1)! . (11)

To complete our understanding of (10), we want to express the Gaussian measure of halfs-
pace h−(ρ1, θ1, ρ2, θ2) in a more explicit way. It will be convenient to understand the signed
distance of its boundary to the origin of Rd−1. For a halfspace H we define the signed dis-
tance to be d (0, bdry H) if 0 ∈ H and −d(0, bdry H) otherwise. Let t(ρ1, θ1, ρ2, θ2) denote the
signed distance of bdry h−(ρ1, θ1, ρ2, θ2) to the origin.

We now claim that t(ρ1, θ1, ρ2, θ2) = (ρ2 − ρ1 cos α)/sin α, where α ∈ [0, π ] is the angle
between θ1 and θ2. See Figure 1 for an illustration of the halfspaces. To see the claim, note
first that it is enough to perform this calculation in R

2. Assume without loss of generality that
θ1 = (1, 0) and θ2 = (cos α, sin α). Then t(ρ1, θ1, ρ2, θ2) is the y-coordinate of the intersection
point of the lines defined by the equations (x, y) · θ1 = ρ1 and (x, y) · θ2 = ρ2, which implies
that x = ρ1 and ρ1 cos α + y sin α = ρ2. The claim follows.

In other words,

t(ρ1, θ1, ρ2, θ2) = ρ2 − ρ1θ1 · θ2√
1 − (θ1 · θ2)2

.

To understand this quantity, it will be helpful in the next calculation to reinterpret certain inte-
grals as expectations and to think of θ1 and θ2 as random unit vectors. With that interpretation,
we will use the following known fact: the distribution of the random variable W := θ1 · θ2 has
density function

w �→ �(d/2)√
π�((d − 1)/2)

(1 − w2)(d−3)/2

with support [−1, 1]. This follows immediately by symmetry from the fact that any one-
dimensional marginal of the uniform distribution in Sd−1 has that density function. See [5,
Lemma 6] for a proof of this last fact.
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14 B. LEROUX AND L. RADEMACHER

We combine the previous calculations to determine the asymptotics of the first term (s =
s′ = −) in the sum in (7). We start by using (8)– (11),

�(d)2
∫
R

2+

∫
(Sd−1)2

(∫
H(ρ1,θ1)d

1{for all i, xi∈H−(ρ2,θ2)}
∣∣[{xi}d

i=1

]∣∣ d∏
i=1

f (xi) dxi

)

×
(∫

H(ρ2,θ2)d
1{for all i, yi∈H−(ρ1,θ1)}

∣∣[{yi}d
i=1

]∣∣ d∏
i=1

f (yi) dyi

)

dθ1 dθ2 dρ1 dρ2

≤ �(d)2d

(d − 1)!(2π )d

∫
R

2+

∫
(Sd−1)2

e−d(ρ2
1+ρ2

2 )/2(μ(h−(ρ1, θ1, ρ2, θ2)))d(μ(h−(ρ2, θ2, ρ1, θ1)))d

dθ1 dθ2 dρ1 dρ2, (12)

and in the last expression rewrite the integrals over θ1 and θ2 as expectations and use our earlier
calculations about the Gaussian measure of h−( · ) to write it as

d!ω2
d

(2π )d

∫
R

2+
e−d

(
ρ2

1+ρ2
2

)
/2
Eθ1,θ2 ((	(t(ρ1, θ1, ρ2, θ2)))d(	(t(ρ2, θ2, ρ1, θ1)))d) dρ1 dρ2

= d!ω2
d

(2π )d

∫
R

2+
e−d

(
ρ2

1+ρ2
2

)
/2
EW

((
	

(
ρ2 − ρ1W√

1 − W2

)
	

(
ρ1 − ρ2W√

1 − W2

))d)
dρ1 dρ2

= d!ω2
d�(d/2)

(2π )d
√

π�((d − 1)/2)

∫
R

2+
e−d

(
ρ2

1+ρ2
2

)
/2
∫ 1

−1

(
	

(
ρ2 − ρ1w√

1 − w2

)
	

(
ρ1 − ρ2w√

1 − w2

))d

× (1 − w2)(d−3)/2 dw dρ1 dρ2

≤ 2o(d)
∫
R

2+

∫ 1

−1

(
e
(−ρ2

1−ρ2
2

)
/2	

(
ρ2 − ρ1w√

1 − w2

)
	

(
ρ1 − ρ2w√

1 − w2

)√
1 − w2

)d−3

dw dρ1 dρ2,

(13)

which, by Proposition 4, is asymptotically equal to Cd+o(d)
4 ; here we define

C4 := sup
ρ1,ρ2≥0
w∈[−1,1]

e−(ρ2
1+ρ2

2

)
/2	

(
ρ2 − ρ1w√

1 − w2

)
	

(
ρ1 − ρ2w√

1 − w2

)√
1 − w2 ≈ 0.4424 (14)

(the values here and later are estimated via numerical optimization) and we use Stirling’s
approximation d! = �(d + 1) ∼ √

2πd(d/e)d to get

d!ω2
d�(d/2)

(2π )d
√

π�((d − 1)/2)
∼ (d − 3)

√
(d − 2)d

e5/2π

(
d√

(d − 3)(d − 2)

)d

≤ 2o(d).

The other three terms in (7) have similar asymptotics, with C4 replaced by

sup
ρ1,ρ2≥0
w∈[−1,1]

e−(ρ2
1+ρ2

2

)
/2
(

1 − 	

(
ρ2 − ρ1w√

1 − w2

))
	

(
ρ1 − ρ2w√

1 − w2

)√
1 − w2 ≈ 0.355

and

sup
ρ1,ρ2≥0
w∈[−1,1]

e−(ρ2
1+ρ2

2

)
/2
(

1 − 	

(
ρ2 − ρ1w√

1 − w2

))(
1 − 	

(
ρ1 − ρ2w√

1 − w2

))√
1 − w2 = 1

4
.
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Namely, the first of the four terms in (7) is asymptotically the largest, and

P(X, Y ∈ F([X, Y])) ≤ Cd+o(d)
4 .

Finally, note that the argument of sup in (14) is logconcave and symmetric in ρ1, ρ2 for any
fixed w (using the known fact that 	 is logconcave). This implies that its value at ρ1, ρ2, w
is less than or equal to its value at (ρ1 + ρ2)/2, (ρ1 + ρ2)/2, w and it is therefore enough to
maximize for ρ1 = ρ2, which justifies the simplified expression in the statement of the theorem.
Lower bound. In (6), consider the term 1{for all i, xi∈H+(ρ2,θ2)} + 1{for all i, xi∈H−(ρ2,θ2)}. Note that,
almost surely, one of H+(ρ2, θ2) and H−(ρ2, θ2) is the ‘bigger’ relative to the enclosing integral
over H(ρ1, θ1) in the sense that it contains in its interior the point in H(ρ1, θ1) that is closest to
the origin, namely the point ρ1θ1. More precisely, let HM(ρ1, θ1, ρ2, θ2) be, almost surely, the
halfspace among H+(ρ2, θ2) and H−(ρ2, θ2) that contains ρ1θ1 in its interior. Then

1{for all i, xi∈H+(ρ2,θ2)} + 1{for all i, xi∈H−(ρ2,θ2)} ≥ 1{for all i, xi∈HM(ρ1,θ1,ρ2,θ2)} . (15)

Let Z = (Z1, . . . , Zd) ∈R
(d−1)×d be i.i.d. standard Gaussian (identifying H(ρ1, θ1) with

R
d−1 as formally described in the ‘upper bound’ part of this proof), let E′ be the event {Z ∈

hM(ρ1, θ1, ρ2, θ2)d}, and let hM(ρ1, θ1, ρ2, θ2) be the halfspace HM(ρ1, θ1, ρ2, θ2) ∩ H(ρ1, θ1)
in R

d−1 (identifying H(ρ1, θ1) with R
d−1). Now, using Lemma 3 (a lower bound on the

expected volume of a random simplex in a halfspace) and a calculation similar to one in the
‘upper bound’ part of the proof, we have

∫
H(ρ1,θ1)d

1{for all i, xi∈HM(ρ1,θ1,ρ2,θ2)}
∣∣[{xi}d

i=1

]∣∣ d∏
i=1

f (xi) dxi

=EZ (|[Z1, . . . , Zd]| 1E′ )
∫

H(ρ1,θ1)d

d∏
i=1

f (xi) dxi

= PZ(E′) EZ (|[Z1, . . . , Zd]| | E′)
∫

H(ρ1,θ1)d

d∏
i=1

f (xi) dxi

= e−dρ2
1/2(2π )−d/2(μ(hM(ρ1, θ1, ρ2, θ2)))d

EZ (|[Z1, . . . , Zd]| | E′)

≥ 2o(d)(e/d)d/2e−dρ2
1/2(2π )−d/2(μ(hM(ρ1, θ1, ρ2, θ2)))d

≥ 2o(d)(e/d)d/2e−dρ2
1/2(2π )−d/2(μ(h−(ρ1, θ1, ρ2, θ2))

)d
, (16)

where we use that μ(hM(·)) ≥ μ(h−(·)) because hM(·) contains the origin.
We conclude the lower bound similarly to the end of the upper bound, (12) and (13). Start

from (6) and use (15) and (16) twice to get

P(X, Y ∈ F([X, Y]))

≥ �(d)22o(d)
(

e

2πd

)d ∫
R

2+

∫
(Sd−1)2

e−d
(
ρ2

1+ρ2
2

)
/2(μ(h−(ρ1, θ1, ρ2, θ2))μ(h−(ρ2, θ2, ρ1, θ1)))d

dθ1 dθ2 dρ1 dρ2;
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use Stirling’s approximation, rewrite the integrals over θ1 and θ2 as expectations and use our
earlier calculations about the Gaussian measure of h−( · ) to get the lower bound

≥ 2o(d)�(d)ω2
d

(2π )d

∫
R

2+
e−d

(
ρ2

1+ρ2
2

)
/2
Eθ1,θ2 ((	(t(ρ1, θ1, ρ2, θ2)))d(	(t(ρ2, θ2, ρ1, θ1)))d) dρ1 dρ2

= 2o(d)�(d)ω2
d

(2π )d

∫
R

2+
e−d

(
ρ2

1+ρ2
2

)
/2
EW

((
	

(
ρ2 − ρ1W√

1 − W2

)
	

(
ρ1 − ρ2W√

1 − W2

))d)
dρ1 dρ2

= 2o(d)�(d)ω2
d�(d/2)

(2π )d
√

π�((d − 1)/2)

∫
R

2+
e−d

(
ρ2

1+ρ2
2

)
/2
∫ 1

−1

(
	

(
ρ2 − ρ1w√

1 − w2

)
	

(
ρ1 − ρ2w√

1 − w2

))d

× (1 − w2)(d−3)/2 dw dρ1 dρ2

≥ 2o(d)
∫
R

2+

∫ 1

−1

(
e
(−ρ2

1−ρ2
2

)
/2	

(
ρ2 − ρ1w√

1 − w2

)
	

(
ρ1 − ρ2w√

1 − w2

)√
1 − w2

)d−3

dw dρ1 dρ2

which, by Proposition 4, is asymptotically equal to Cd+o(d)
4 , where C4 is defined in (14) and

we use Stirling’s approximation in the same way as in the calculation after (13) to get

�(d)ω2
d�(d/2)

(2π )d
√

π�((d − 1)/2)
≥ 2o(d). �

Proof of Theorem 3. This is immediate from Lemma 4 and the fact that the number of
d-subsets of X is

(2d
d

)= 4d+o(d).
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