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Abstract

We study extremal properties of spherical random polytopes, the convex hull of random
points chosen from the unit Euclidean sphere in R”. The extremal properties of interest
are the expected values of the maximum and minimum surface area among facets. We
determine the asymptotic growth in every fixed dimension, up to absolute constants.

1 Introduction

The research on random polytopes in convex bodies has been initiated in the works
of Rényi and Sulanke [1, 2]. They studied the expected volume of the convex hull of
finitely many points chosen from a convex body in dimension 2.

In higher dimensions this research has been extended by many people and by now
the literature on random polytopes in convex bodies is vast. Schneider and Wieacker
[3], Miiller [4], Reitzner [5], Bardny [6, 7], and Schiitt [8] extended the results of
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Rényi and Sulanke to convex bodies with smooth boundaries. In particular, it has been
shown in [6, 7] and [8] that the expectation of the symmetric difference of a smooth
convex body and a random polytope of N points chosen from a convex body is of the

order N~ T .

Bérany and Buchta settled the case of random polytopes in a polytope [9]. Barany
and Larman found a connection between random polytopes and floating bodies [10].

Much research focused on random polytopes whose vertices have been chosen from
the interior of a convex body. Reitzner [11] and Schiitt and Werner [12] studied the
case of random polytopes whose vertices have been chosen from the boundary of a
smooth convex body. Then, amazingly, random approximation is almost as good as
best approximation. In [13], Ludwig, Schiitt and Werner approximated the Euclidean
ball by arbitrarily positioned (neither inscribed nor circumscribed) random polytopes.
This was generalized to smooth convex bodies by Grote and Werner in [14]. Random
polytopes of vertices that are chosen from the boundary of a simple polytope have been
investigated by Reitzner, Schiitt and Werner [15]. Very recently Besau, Gusakova and
Thile [16] treated the case when the approximated convex body is neither smooth nor
a polytope. Boroczky and Reitzner considered random polytopes that circumscribe a
convex body [17]. More related results can be found in [18, 19].

Most results involve the symmetric difference metric, but there are also results
where the error of approximation is measured in the Hausdorff distance. For instance
Glasauer and Schneider [20] gave precise asymptotics for a smooth, convex body and
random polytopes with respect to the Hausdorff distance. For polytopes in R? such a
study has been carried out by Prochno, Sonnleitner, Schiitt and Werner [21]. Moreover
there are results by Boroczky, Fodor, and Hug [22] when the error is measured in
intrinsic volumes. Extensions to approximation of convex bodies on the sphere by
random polytopes were obtained e.g., by Besau, Gusakova, Reitzner, Schiitt, Théle
and Werner [23].

In this paper we consider extremal geometric and combinatorial properties of a
random polytope with vertices on the sphere. A study of extremal properties of random
polytopes has only been started recently [24]. Here we investigate the expected values
of the maximum and minimum surface area among facets of a random polytope whose
vertices are chosen randomly from the Euclidean sphere in R”. More precisely, we
show that for a random polytope of N chosen points the maximal expected surface
area of a facet is of the order 1°gNN in dimension 2 and higher. Surprisingly, there is
a change in behavior of the expected minimal surface area of a facet. It is of order
N2 in dimension 2, of order N ~%/3 in dimension 3 and of order N —3/2 in dimensions
greater than or equal to 4.

Our contributions We find the asymptotic growth of the expected values of the
maximum and minimum surface area among facets of a random polytope Py that is
the convex hull of N i.i.d. uniformly random points on $”~!, in all dimensions, up to
multiplicative constants. These results are stated in Theorems 1 and 2 below. There
JF(P) denotes the set of facets of polytope P.
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Expected extremal area of facets of random polytopes

Theorem 1 (maximum area facet) Let n > 2. There exist constants 0 < a, < b, that
depend only on n such that for all N > n + 1 we have

log N log N
g <E max vol,_{(F) <b, g .
N FeF(Py) N

Aan

The proof of Theorem 1 is split into the upper bound and the lower bound, stated
formally as Theorems 10 and 11. Theorem 10 (upper bound) is actually stronger in
that it establishes a tail inequality on max ge 7 (py) vol,—1(F).

Theorem 2 (minimum area facet) There exist constants 0 < ¢, < C, and N,, that
depend only on n such that:

(i) Forn =2 and all N > 3,

3/3AN"2<E min vol|(F) <2xN~2.
FeF(PyN)

(i) Forn =3 and all N > N3,

C3N_8/5 <E min voly(F) < C3N_8/5.
FeF(Py)

(iii) Forn >4 and all N > N,

ecaN32 <E min vol,_(F) < C,N~32.
FeF(Py)

We discuss these theorems. While the order of the expected minimal surface area
of a facet is surprising, the order of the expected maximal facet was suggested by
related, known results: Glasauer and Schneider [20] proved that the Hausdorff distance
between the n-dimensional Euclidean unit ball By and the convex hull Py of N random
points satisfies

lim 5
N

2
dp(By, Py) _ 1 (2/a0("FH\ ™"
- T3 ’

where the limit is taken in the distributional sense. Therefore, for large N there is a facet

2
whose distance to the boundary is of the order (IOIgVN)ﬁ. Such a facet is contained

in an (n — 1)-dimensional Euclidean ball with radius «/E(logTN)ﬁ. Therefore the
log N
N

surface area of the facet is less than 2% vol, 1 (Bgil) . This suggests that the

. n—1 _
expected maximal facet has a surface area less than 2 2 vol,,_ (B;Z 1) IOZgVN.

One arrives at a similar conclusion by aresult of Bonnet and O’Reilly [25] on convex
hulls of random points from the sphere. They studied the expected number of facets
whose signed distances of their affine hull to the origin are between two prescribed
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values /1 and h;. In particular, they showed that for properly chosen constants ¢; and
¢> these distances are almost all between

2 2
cn 3/2\ n= con\2(n+1)/(n—1)
hy = \/1 - (—N (log(N /n)) / ) " and  hy = \/1 — (W) .

Informally, we call /21 the minimal signed distance and £, the maximal signed distance.
This suggests that a maximal surface area facet can be found at the minimal distance
h1 and a minimal surface area facet can be found at the maximal distance /5.
A facet at minimal distance % is contained in an (n — 1)-dimensional Euclidean

ball of radius ,/1 — h% and a facet at maximal distance % is contained in an (n — 1)-

dimensional Euclidean ball of radius ,/1 — h% This means that the facet at minimal
distance has a surface area less than

cin(log 2)3/2

vol, 1 (B ~H——

and a facet at maximal distance has at most area

n+l
CZ”)ﬁ

VOlnfl(Bgil) ( N

The question arises whether the first expression gives the order of the maximal surface
area and the second the minimal surface area. Neither is true. In the case of the maximal
facet, the expression is close and only misses a factor of /log N. In the case of the
minimal facet the true order is very different. This means that the size of the minimal
facet is not directly related to the maximal distance of the facet from the origin. Here
we have a totally different phenomenon.

Note also that the behavior of the minimum is more intricate than that of the
maximum: The asymptotic growth for the minimum depends on the dimension 7.

Outline of the paper Section 2 introduces notation and collects lemmas that will
be used later. Sections 3 and 4 present the upper and lower bounds on the expected
maximum facet volume, respectively. Section5 gives an outline of the argument for
the expected minimum facet volume. In Sects. 6 to 9 we give the proofs of the upper
and lower bounds on the expected minimum facet volume.

2 Preliminaries

Let x (-) be the indicator random variable of an event. We denote the Euclidean norm
onR" by ||-||. The convex hull of points x1, ..., xy € R*is[xq, ..., xn]. Ifx1, ..., x,
are linearly independent aff[xy, ..., x,] denotes the hyperplane containing the points
X1, ..., Xy. The Euclidean ball in R” with center x and radius p is denoted by B} (x, p)
and By = Bj(0, 1). We write d B} or $"~1 for the unit sphere. Let vol, (K) be the
n-dimensional volume of K. In long formulas we often write | K | instead of vol,, (K).
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Expected extremal area of facets of random polytopes

We have vol,(BY) = n/2/T'(% + 1) and vol,—(S"~!) = nx"/2/T'(4 + 1). The
hyperplane orthogonal to & # 0 with distance p > 0 from the origin is denoted by
H(E, p) ={x:(§ x) = plEll}

The Hausdorff distance between two convex bodies C, K C R” is
du(C,K)=inf{p >0:C S K+ pBj and K € C + pB)}.

When the ambient dimension # is clear, Py denotes a random polytope defined as
the convex hull of N i.i.d. uniformly random points from §"~!.
The set of all facets of a polytope P is denoted by F(P).

Gamma and Beta functions We will use the following properties of the Gamma and
Beta functions: ['(x + 1) = [~ t¥e~'ds, ['(n + 1) = nland B(x, y) = fol 1 —

14, — FOCH) Fixta) _
t)y dr = I'(x+y) xoT(x) — L.

. We have lim,_,

Caps and halfspaces A cap of $"~! is the intersection of a closed half space with
§"=1. Equivalently, a cap is an intersection of §”~! with a Euclidean ball.

If H is an affine hyperplane that does not contain the origin, then H~ denotes the
closed half space with H as boundary that does not contain the origin. Similarly, H+
denotes the closed half space with H as boundary and containing the origin. If H
contains the origin then H™ and H ™ refer to any of the two halfspaces with H as
boundary (the specific choice will not matter in our calculations because the event that
H contains 0 has measure O or because the calculation is indifferent to the choice).

By the angle of a cap we mean the polar angle, namely the angle between the rays
from the center of the sphere to the apex of the cap (the pole) and the boundary sphere
forming the base of the cap.

The base of acap S"~' N H™ is BY N H. The radius of the base is also referred
to as the radius of the cap. The height of a cap is the perpendicular distance from the
hyperplane that cuts the sphere to create the cap, to the topmost point of the cap. For
a cap contained in a hemisphere, this means the height of a cap equals 1 — p, where
p is the distance of the hyperplane H to the origin.

The next lemma is well known. We include a proof for completeness.

Lemma3 Letn > 2and 0 < p < 1. Let H be a hyperplane in R" with distance p
from the origin. The surface area of the cap 8"~ N H™ is

1 —
vol,_1 (" 'NH™) = vol,,_2(S"*2)/ (1 — s2)" 7 ds. 1)
p

Forn =2, vol i (S' N H™) = 2arccos p. Forn = 3, volr,(S2 N H™) = 2n(1 — p).
Forn > 4,

n—1 _ _ _ _ n—1 _
I—pH 7T By Y <vol,_ (8" 'nH ) <p 'A-pH T IBY . (2
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Proof Let6 e S"~! be the vector orthogonal to H. Let Pr: $"~' N H~ — H be the
orthogonal projection. Since 0 < p, the map Pr is a bijection. Then

vol (S"—lmH—)—/ & 3)
" ~ Jesnn (NP (), 6)

where N (Pr—!(x)) is the normal at Pr—! (x). Forx € ByNH letr = ||x—Pr(0)| be the
distance of x to the center of the Euclidean ball Bg’ N H. We have (N (Pr_1 x)),0) =
+/1 — r? and, by passing to polar coordinates,

/1—p2 _
vol,_1 (S 'nH) =vo1,,_2(5"*2)/ lp Ldr.
0 V1 =r2

Equation (1) follows with the substitution s = +/1 — rZ.
Equation (2) follows from (3). Indeed, p < (N (Pr=1(x)),0) < 1and consequently

n d 1
a1 - pz)T1 Voln_l(Bgfl) :/ dx < / + < _/ dx
BINH BjnH (N(Pr—"(x)),0) — P JBinH

_ n—1 _
=p '(1—pH'T vol,_1(BS ).

O

Lemma4 Letn > 2and R > 2. Let C € §"~! be a cap with angle ¢ and |C| =
|S"~Y/R. Then for n = 2 we have ¢ = /R and in general,

1 1
n—1y \ -1 n=2 n—1y \ n—1
Loy (1 oo @A
R V01n—1(337 ) 2 R VOln—l(Bgi )
Proof Since the surface area of C equals vol,_1(S"~!)/R we get by Lemma 3,

L1 (S7! ! e
V°”+) = vol,_»(§"2) (1 —s2)" 7 ds.

cos ¢

n—1
Set s = cosu to get % . % = f0¢ sin” 2 udu. Since zﬂ—” < sinu < u for
e
O<u<%
— — 2’

1 2\"2 2N\"2 ¢ ¢
(—) o = (—) / u"2du 5/ sin” 2 udu
n—1\m T 0 0

¢
- 0 n 1
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and we get

1 1
n—1 n—1 n—1 n—1 n=2
(n—l .voln_l(S )) << <n—l .Voln_l(S )) (rr),l,] .

R vol,_»(8"2) R vol,_»(5"~2) 2
The claim follows. O

The following lemma on densest packing of the Euclidean sphere by caps is also well
known. Again, we include its proof for completeness.

Lemma5 Let R > 2 and n > 2. Let k € N be the maximal number such that there
are caps Cq, ..., Cx ofS”’1 with

int(C;) Nint(C;) =0, i#j, and (5)
vol,_1(C;) = |S" YR, foralli=1,... k. (6)

Then, for sufficiently big R,
3"R<k<R. N

Proof We show the right hand side inequality. We have Ule C; € " 1. By (5) and
(6), k|S"1|/R < |S"~!|, which implies k < R.

Now we show the left hand side inequality. We construct caps Cfq, ..., Cp, satis-
fying (5), (6) and such that 3R < m. A maximal §-net in §" ! is a set of points
X1y .-y xm € S" ! guch that lx; — x|l > d and forall x € $"thereisi, 1 <i <m,

such that | x —x;|| < 8. Then the setof caps C; = B} (x;, §/2)NS"fori=1,....,m
satisfies (5) and (6). It is left to show 3~"R < m. Since $"~! C UL, B (x;,6) N
"1 we have |S"7!| < m|Bj (x1,8) N §"~1|. The radius of the base of the cap

B} (x1,8) N S"!isless than 8. By Lemma 3, | B} (x1, §) N §" 1| < j%usg—] lie.

V;,;?z 1S"=11/1B5~"| < m. We choose & such that | B} (x,8/2) N $"~| = |s"~!|/R.

The radius of the base of the cap B} (xl, %) N 8"~ equals %(l — %)1/2. By Lemma

3,
n—1
s\" ! 82\ 7 8
e 1— — Bn—l < |Bn “In n—1
<2> ( 16) 1B, 1= 2<x1’2> s

For large R we have § < % and R < (%)nil |S”_1|/|B§_l| < 3"m. But we know

B |Sn—1|
—R .

m < k. O
Lemma 6 (Miles [26]) Let &1, ..., &,41 be randomly chosen points from S"=L Then
2 n
1T (T3 | TG
Evol,([&1, ..., &1 = — . 3
" Tl re \resh)
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Lemma 7 (Spherical Blaschke-Petkantschin, see e.g. [27]) Let f : (S~ [0, 00)
be a measurable function. Then

/ f(é‘l?""{fl)d;l"'d;n
sn—1 sn—1

1
=(n—1)!// / SE .. 6)
0 Js=L J(H(@,p)nsr—1)n

vol,—1([&1, ..., &)

where d0 and d¢y, ..., d¢, are the (n — 1)-dimensional Hausdorff measures and
d&y, ..., d¢&, are the (n — 2)-dimensional Hausdorff measures.

3 Expected maximum upper bound

In this section we establish that E max g £ (p,) VOl,—1 (F) = 0(101ng) (Theorem 10).
The idea of the argument is to first prove a tail inequality on d (Py, B}) (Lemma 9)
and then deduce from it a tail inequality on max p¢ (py) vol,—1 (F). This tail inequality
implies an upper bound on the expectation from the identity E(X) = fooo P(X > r)dt.

The following Lemma gives an upper bound on the volume of a simplex.

Lemma8 Letn > 2. Let &1,...,&, € "1 be such that [&1,...,&]is (n — 1)-
dimensional. Let H = aff{&y, ..., &,}. Suppose 0 ¢ H~. Let A be the height of the
cap 8"V N H™. Then

n—1
27’l 2 ﬁ n—1
l,— < AN
vol,—1([&1 & < (n—l) n—1)!
Proof We may assume that [&], ..., &,] is a regular simplex. Indeed, among all sim-

plices contained in By N H an inscribed regular simplex has the greatest volume. This
follows from John’s characterization of ellipsoids of minimal volume containing a
convex body.

Let p be the radius of Bf N H. Then A = 1 — /1 — p? and p = v/2A — A% The
volume of an (1 — 1)-dimensional regular simplex with sidelength s is —Y— ( L)"_1.

. (n—=D!'\ /2
us,
ﬁ n "E] n—1
vol,—1([&1,...,&]) < (n—1)! (n—l) g
1
T
_ (n{r_ll)! (n ! 1) QA — AY'T
n—1
S( ﬁl)'( - 1) 2 (2A)%. )
n—1)\n-—
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We need the following estimate of the tail probability of the Hausdorff distance of
a random polytope to the ball. Similar results can be found in [20]. For completeness
we include a proof of the statement we need. Our proof is based on unpublished work
[28].

Lemma9 LetO < A < 1. Then

N n—1
. a1 vol,_1 (BSY) 6\ %
P(du(Pn, By) = A) < (1 — (A7) m) <Z)

vol, 1 (5"~
vol, 1(By ")

Proof Let xi,...,x; be a maximal p-net in $"~1 We choose p = /A/2. Let
&1,...,&n be a choice from §7=1 with dH([Sl, ..., END, Bg’) > A. Then there is
af e §"=1 such that all of the &1, ..., Ey are elements of HT(£, 1 — A). Moreover,

H (¢, 1-A)Nns"' =By V2a)ns" (10)
Since x1, ..., x is a maximal p-net, there is ig with ||x;, — &|| < p and, by triangle
inequality, B} (x;,, p) € B} (£, 2p). Thus, B} (x,-o, «/A/Z) ns*1c B} (é;‘, 2A) N
ST, By assumption, the interior of (10) does not contain any &, ..., &y. It follows

that the interior of BE’ (xio, JA/ 2) N S~ does not contain any &1, ..., &y. Therefore

{Gi. .. &n) 1 du (&1, ... EN], BY) = A}

< {(gl,...,g,v) Si=1,....N)& ¢ Bg(xj,,/A/z)mS"*‘}.

j=1
By (2),
B3 (x. VA2) N 8" = |(H (1 = A4 0877
n—1
2\ 2
=(5-2) s
=\2 " 16
> (A/3)'T By, (11)
Consequently,

] w1 voly— (B3 ™)
P(du (&1, ..., En], BY) = A) <k (1 —(a/3)7 m>
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Since x1, ..., x; is a maximal p-net, the sets int(B5 (x;, §)) N sl i =1,... k,are
pairwise disjoint. Therefore,

k

5[t (o a) 5 <157

i=1

By (D), [Bj(x;,vA/8) n 7Y = (%)%IBQHL Thus, k <
(%)’%l 15"=1|/|B5~"|. The claim follows. -

Theorem 10 Let Py be the convex hull of N i.i.d. uniformly random points from S"~ 1.
Then

]P’( max Volnl(F)zt>

FeF(Py)

Ji ( 12n )51 vol, 1 (5"~ 1)

17
tn—D'\n—1/  vol,_ (B} ")
(n—1)! N vol, (B Y\
_ n—1). (n— n—1{Dy
X<1 T <6n> voln_l(sn—l>> } (2

Moreover, for each n there exists Ny such that for N > N,,

§min{

E max vol,_(F) < 6"/? Je-n vol,_1(5"1) log N
" - .

- (13)
FeF(Py) (n—=Dlvol,_;(BY™") N

Proof Let F € F(Py). Let Ap be the height of the cap given by F. By Lemma 8,

]P’( max vol,_(F) > t)
FeF(Py)

n—1
2 2 n—1
<P " v max Ag >t]).
n—1 (n — D! FeF(Py)

Since dy (B5, Py) > maxper(py) AF, it follows,

]P’( max vol,_(F) > t)
FeF(Py)

<P (dH<B§, Py) > % ((n— 1)!t/\/ﬁ)"2-') .

By Lemma 9 and setting

=D (n—1\"T vol,_1(B} ™)
= Uen vol, (5" 1)
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we get

IE”( max voln_l(F)zr)gzL?“l(l—tan)N.
FeF(Py)

Equation (12) follows.
Moreover,

o0
E max voln_l(F)=/ IP’( max Voln_l(F)zt>dt
FeF(Py) 0 FeF(Py)

e n=1 Oy N
< m1n{1,2 2 T(l—tan) }dt
0

We put s = ta;, and get

A

L= 1 (1—9)"
E max vol,_|(F) < — min{1,2 2 —— ¢ ds
FeF(Pn) oy Jo K
1 e n—1 e_NS
—/ min{l,ZZ }ds.
Un Jo N
Since (1 + %)k , k € N, is an increasing sequence converging to e,

Y 1 S 1
E max vol,_ 1(F)<67 ¢-n Vo1 1)
FeF(Py) (n = Dlvol,_1(BS™)

00 el e—Ns
/ min {1, 27 } ds.
0 N

IA

n—1
Let 5o be such that 272 &

I 1 S 1
E max vol,_ 1(F)_67 ¢-n vol,—i( )
FeF(Py) (n = Dlvol,_ (B}~ )

et [Py
(so +2T‘/ ;eNAds>. (14)
k%)

Since e V% /s is decreasing on (0, co) we get for sufficiently big N,

1 27 N log N
— log <50 < .
N log N N

Indeed, for sufficiently big N,

1 2
5! exp(—N 4 log 2 Tog N M) B log N -
% log 21"21NN log N +10g2% —loglogN
og
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and
__arlogN
ot PCNTYT) et 1
log N logN ~
N
Thus,
E max vol,_((F) < 6% e n
FeF(Py) (n— 1!
vol,—1(S"~1) [logN N /00 LNy,
VOlnfl(Bgil) N + log 2@1\’ s .
We have
o0 o
/ ns1 —eNsds < / nl e Nsds
% log Tog N § IOg log N % log 2log NN
_ 2_% log NN
N log oz N
Therefore, for sufficiently big N we have (13). ]

4 Expected maximum lower bound

In this section we show that E maxpcz(py) vol,—1(F) = Q(IOZg\,N). This result is
stated formally in Theorem 11 below and is one side of the inequality in Theorem
1. The proof proceeds as follows. We first choose a set of @(%) disjoint caps on

$"~1. We then prove (in the proof of Theorem 11) a lower bound on the probability
that at least one of these caps contains a facet with volume Q(]Olg\,N). The main idea
behind the proof of this lower bound is a specific application of the “second moment

method”, i.e., the fact that for a positive random variable X,

(EX)?
E(X2?)’

P(X > 0) >

which follows from the Cauchy-Schwarz inequality. In our application of the above
inequality, X is the number of caps that contain a facet with volume Q(%) The
proof in the case n = 2 is simpler and is dealt with separately.

Theorem 11 Let &1, ..., £y be randomly chosen points from S"~! with respect to the
uniform measure. Let Py = [&1, ..., &N]. Then for n = 2 and sufficiently big N,
1 logN

E max vol,_1(F)> — .
FeF(Py) n=1 )_Zn N
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For n > 3 and for sufficiently big N,

1, Sn—l V3 2n2—2n—7 log N
E max vol,_(F) > volu—i1( 1) Ln 5 o8 .
FeF(Py) vol,_1(By™") Vo 303 g2ni—dn=1 N

For the proof of Theorem 11 we need two technical lemmas. The first is an easy
bound on the distribution of the volume of a random simplex and the second establishes
asymptotic upper and lower bounds for the probability that a given cap of S*~! contains

a “large” facet. Let &1, ..., &,4+1 be points that are chosen randomly from S§7=1 Let
Vion 1= E((vol, ([&1 - .., Exr1]))). (15)
Lemma 12 Let &1, ..., £nq1 be points that are chosen randomly from S"~1. Then

P {voly([&1. ..., &ns1]) = Vin/2} = (1/DVE,/ Vo

Proof By the Cauchy-Schwarz inequality, we have for any non-negative random

variable Z that P{Z > 1EZ) > }E(Zz)f)- The claim follows. O

Let C be a cap of "1 and let R > 1. We define the constant

vol,—1 (Sn_l) Vl,n
vol,_1(By~") 2R~

volg p 1= (16)

Let Hg c : ($"~1" — {0, 1} be such that Hg c(1,...,&,) = 1if the following
holds:

aff(¢1,....,&nNS"lcc and voly—1([€1, ..., £al) = volg,, . (17)

Otherwise Hg c (&1, ...,&,) = 0.

We do not specify R for now. Later we shall choose R := ¥

logN *

Lemma13 Letn > 3 and R > n"n. Let C be a cap of "' with |C| = |S"~'|/R.
Then

1 1SV (= DI — "3
R 3.05. ﬂn2—2n—l Van

T\ n(n—2)
<EHpc=(3) 0= Dln— 1" S" 2V, R

Proof By definition

1

EHR’C = |Sn—1 |n

/ Hpg cd§; ---d&y,
sn—1 sn—1
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¢(R,n)
\ 77
€1
arccos q \
‘\ gn
arccos(n, e1) H(n,q)
H \717 q
o (n.q)

Fig. 1 Angles in the proof of Lemma 13

where d§; denotes the restriction of the (n — 1)-dimensional Hausdorff measure to
5"~ We apply the spherical Blaschke-Petkantschin formula (9),

1
(n—1)!
BHRC = (gt / /

0 gn—1

/HR,c<s1,...,sn>

(Hagns1)"

’[E]’ .. ’
Wd& -dgpdndg,  (18)

where d&; denotes the restriction of the (n — 2)-dimensional Hausdorff measure to
H(n,qg)N §"=1 and dn equals the restriction of the (n — 1)-dimensional Hausdorff
measure to $” . We may assume that the hyperplane defining the cap C is orthogonal
to eq. Let ¢ (R, n) be the angle of the cap C.

Let &, ..., &, be affinely independent points from $"=1 and let H (n, q) be the
hyperplane through &1, ..., &,, i.e. the hyperplane orthogonal to unit vector 5 at dis-
tance g from the origin. Notice that Hg c(§1, ..., &,) = Liff vol,—1([&1, ..., &]) =
volg , and the angle of the cap $"~! N H (1, ¢)~ (which equals arccos ¢) is at most
¢ (R, n) — arccos(n, e1) (see Fig. 1). The latter is equivalent to

arccos(n, e1) + arccosq < ¢(R, n). (19)
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Therefore

Hrc(1,....8) = X(arccos(n, e1) +arccosg < ¢(R, n))
x(voly—1([&1, ..., &1) = Volg ).

This in (18) gives

— 1 !
EHg c = %/ / 1 x (arccos(n, e1) + arccos g < ¢(N, n))
0 Jsn-

* /(H( NS 1)" X(VOI"_I([sl’ s bl = VOlR,n)
n.q -

Voln—l([gl’ RN ‘i:n])
(1—g»n?

d&; - --d§,dndq. (20)

We first look at the upper bound: Since x (VOln_1 ([&1, ..., &]D = VOlR’n) <1,

_ 1\ qn—2n
_ (= 1Ys"?

EHR’C — |Sn7] |n
1 2 nz—n—]
1— 2
/0 /SYH x (arccos(n, e1) + arccos g < ¢ (R, n))%
x J(g)dndq,
where
vol,—1([&1, ..., &) dg
J(q>=f , e —
(Hm.gns—1) (I1-¢>7 [S" 21 —-¢) 7T

PR dén
1S7=2|(1 — ¢2)"T

lefﬂf
We have introduced the factor (1 — qz) 7= in order to normalize J(g). Using the
substitution & = (1 — qz)%q andd§; = (1 — qz)%da,i =1,...,n,weget

1
J(Q) = W /‘;niz te /niz VOln—l([;ly B é‘n])dé‘l te d{n = Vl,nv
where Vi , is given by (15). Thus,

(n = DYs"2)"
EHg,c < W

1,n

n2—2n—1

1
/ / x (arccos(n, e1) +arccosg < ¢(R,n))(1 —¢*) "~ 2 dndg.
0 sn—1
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We use polar coordinates

mag, ..., ap—1) = cosaj
nk(oer, ..., Qp—1) = sinay - - - Sin g —1 COS Ak, k=2,3,....n—1
N1, ..., 0y—1) =sinay ---sinoy,_1.

The change of coordinates induces the factor sin” 2 ) sin" 3 ay - - - sina,_p. Then
o1 = arccos(n, e1), i.e. cosay = (1, e1). We have

/ X (arccos(n, e1) + arccosg < ¢(R, n))dr)
sn—1
T T 2
= f f x (a1 +arccosg < ¢(R, n))
0 0 0
n—2

(1_[ sin k1 ozk> day,_1 -+ -day.

k=1
Since
b4 b4 27 [n—2
IS"_2| = / / / l—[sin"_k_lak day,,_1 - - - doay,
0 o Jo \;5
we get
/ x (arccos(n, e1) + arccos g < ¢(R, n))dn
Sn—]
. 2D
= |S”_2|/ X(Oél + arccosgqg < ¢ (R, n)) sin" 2 opdog.
0
Therefore
-1 Sn—2 n+1
EHp ¢ < (n—1!| | Vi

- |S"*1|”

n2—2n—1

1 T
/ / X(oq + arccosqg < ¢ (R, n))(l - qz) 2 sin"_zozldaldq.
0 JO

Since x (o1 +arccosg < ¢(R,n)) < x (a1 < ¢(R,n))x (arccosqg < ¢(R, n)), the
double integral is less than or equal to

g
/ x (a1 < ¢(R, n))sin" % adary
0

n2—2n—1
2

1
X / X(arccosq < ¢(R,n))(1 —q2) dqg,
0
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which, since ¢ (R, n) < m, is equal to

¢(R,n) ) 1 . n2=2n-
/ sin"~ aldalf (1-¢g°) 2 dg.
0 cosp(R,n)

We use twice that sin x < x and substitute ¢ = cos s,

(n — DY|§" 2|+ ¢(R,n)""! /WR’”) . 29
EHp c < v R n*=2n 4
R.C = S| L,n 1 A (sin s) s

_ =Dt (R )"
- |Sn—1|n Ln (n— 1)3

Finally, this with (4) gives

(n — D12+l v 1 (71)"("—2)
|§n—1n Ln n—13\2

n
1 vol,_ (S 1)
R vol,— (B~

= (/2" (n = Dl(n = 1" 3|S" 2|V, R,

EHg,c <

Now we consider the lower bound: We start from (20). We restrict the integration
with respect to ¢ to the interval [0, f (N, n)],

— 1) Sn72 n f(N,n)
EHe > (n— D! | < &(N
RCZ =g |, - x (arccos(n, e1) + arccos g < ¢ (N, n))
)127

2 2n—1
I(g)(1 —g°) 2 dndg,

where

)VOIn—l([Elv e 5;1])

I(‘]) = / X (VOln—l ([El’ MR En]) Z VOlR,n

n—1
(H(p,q)NS"1y" (=g
“ dé;
,-11 157-2|(1 — g7
and
f(N,n):= |1-— (lﬂ)z' (22)
R By
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We verify that f(N, n) is well-defined, i.e. the expression under the square root is
nonnegative. We have | By | < ﬁ|B£’71|.Indeed, since I'(+) isincreasingin [3/2, 00),

B! a0t 1
By _mirested o

B n 4+ T

Moreover, since R > n - ",
2

n=11\ i1 nN a=T =
<1|S 1|) 1=(l—n|321|> 15(—”‘5) L @
R|B§‘*| R|B§‘*| R 24—

T

Using the substitution §; = (1 — q2)%§,' andd§ = (1 — q2)%d§,~,i =1,...,n,we
get

1()—%/ (vol (I ;])>M)
q) = |Sn—2|n (Snfz)nx n= IS L e Sl = a _qZ)%
vol,—1([¢1, .-, &) [ [ déi-
i=1

n—1

since 1 (Volu—1(¢1, - &al) = volga(l = ¢3)~"T ) voly— (&1, .. &) is non-
negative and the integral is an expectation,

* 2 n—1
1@ = [ B[ (ol 2 vola - )7
0
voly—1([¢1, -+ -, &nl) = s]ds

_ /(;oo . [volnfl (ISP Zn]) > max (s, volg (1 — q2)_n771)] ds

n—1

volg.u(1—¢g?)~ 2 =l
> / P[vol—1 (@1, &al) = max (s, volg (1 —g») "' ) ] s
0

VOlR,n(l_qz)_izﬂ 2 n—1
:w/() ]P)I:V()ln—l([;lv---,gn]) >volg ,(1—¢q )_T:|ds,

If g < f(N, n), by (22) this means

(1 —gH ™" < (1= FV.0)?) T = Rvol,_i (BI~1)/vol,_; (5"~1)

and so, using Lemma 12,
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n—1

P(voly—1([¢1. .- -, &ul) = Volgu(1 —g») ™ 7)
= P (vl 1([€15 - &a]) = Volg.u Rvolu—1 (B~ /vol,-1(5"7))
=P(voly—1([¢1, - Eal) = Vin/2) = (1/4) VP, /Van.

It follows

Vﬁn volg Vﬁn IS0 1

Vol —gD)'T  8Va,(1—g2)'T IBY 'R

I(q) >

We have shown that

(n—D(n — D2V,

EHg c >
RC = 8|S”_1|"_1V2,,1R

f(N.n) o 12=3n
/ / X(arccos(n, e1) +arccosg < ¢(R, n))(l —qg“) 2 dndg.
0 sn—1
By (21) we get

-2 3
(n— D — D2V,
8|5n—1|n—1V2’nR

EHR’C >
f(N,n) prm n2—3n
s on—2 2\ =1
/ / x (a1 +arccosg < ¢ (R, n))(sin" “a)(1 —g°) 2 dajdg.
0 0

Since x (ot + arccosg < u) > x (a1 < u/2)x (arccos g < u/2) we obtain

(n— D — D2V,
8|S"_1|"_1V2,nR

™ R, e
/ X (on < it > n)) sin "2 ayda;
0

Sf(N,n) R 23
/ X (arccosq < w) (1—¢% 7 dqg.
0

EHg c >

Since ¢ (R, n) < m,

(n— D — DSV,
8|S"*1 |n71 V2,nR
$(R.n)/2 F(N.n) 2
/ sin"fzoeldal/ ¢! —qz)TdQ-
0 [¢

¢(R.n)
08 =5

EHg,c >
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We use sin o] > %al forO0 <o < % and g = cosu to get

(=D —DS"2"VP, 2\"7? 1 (R
8|sn—1n=1vy, R 2

s

$(R,n)/2

/ (sin u)"2_3"+1du.
arccos f(N,n)

EHgc =
n—1

Thus
- _ (n _ 1)' |Sn_2|nvl3,n % n?—2n—1 ¢(R, I’l) n—1
RE =g 1p=1y,, R \x 2
2
/¢(R,n)/ un2—3n+1du
arccos f(N,n)
where

$Rm2
/ u” 73n+]du
arccos f(N,n)

(¢(R, n)/2)" """ _ (arccos f(N, n))
n—10n-2)

(n=1)(n—-2)

We have arccos /1 —t < %\/f for 0 <t < 1. Therefore

arccos f(N,n) = arccos\/l — (1= f(N,n)?) < Z/1— f(N,n)2.

2
n—1

) . Thus, using (4) to get a lower bound on

l |Snfl‘
Ry~

By (22), arccos f(N,n) < %(
¢ (R, n),

(R,n)/2
/¢ m/ u11273n+1du
arccos f(N,n)

> 1 <l, |S"—1|)”
T (=D —2) | 20-De=2 \ R gl
T\ n—1)(n-2) 1 |S”71| 2(n—2)
_ 2~ =1)(n-2) ( 1 |Sn_1| >n—2 (1 ( n—l1 |Sn—1| )}12)
T m—-Dhn-2) \R 1By “\r B .
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P |Sn*1| n—=2 _n=2 . _1 2
By (23) we get (——) <~ 7 . Therefore, since 7172 < 3

Ry -
n—2
/¢(R,n)/2 un273n+ldu . 27(?!71)0!72) |Sn71 |
arccos f (N,n) T 3n—-1D@nr—-2) R|B§_1|
It follows

(}’l _ 1)‘ |Sn—2|nV1%n 2 n?—2n—1 1
8|S”_1|"_1V2,nR on—1

1 |Sn—1| 2—(n—1)(n-2) |Sn—1| n=2
RIBY3(m—Dm—2) \RIB
1 IS"2 Ve, (e = Dl(n — 1) 3
= ﬁ 3. 25. anz—2n—1 V, " :

EHg,c > —
T

m}

Proof of Theorem 11 For n = 2, this is essentially known and we deduce it from the
expected length of the largest gap in a sample of uniformly random points in S'. Let
X denote the (geodesic) length of the largest gap in a sample of N uniformly random
points from S'. It is know that E(X) = % ZIN=1 ll Let Y denote the length of the
longest edge of the convex hull of the same sample. Let A be the event that the convex
hull of the sample contains the origin. To relate the arc length with the edge length of
the convex hull of the sample, notice that P(A) = N /2N -1 (by Wendel’s theorem).
In general Y can be much smaller than X but if A holds, then ¥ > %X . In this way,
E(Y) > EY | A)P(A) with[P(A) > 1/4for N > 3 while E(Y | A) > 2/m)E(X |

A). From the total expectation formula, E(X | A) = ﬁ(E(X) —E(X | AP(A)) >
E(X)—27P(A). Combining everything, E(Y) > %E(X) — 2N—N,1 Therefore E(Y) >

%w - 2,@’—,1 For sufficiently big N we get E(Y) > %w

The remainder of the proof is the case n > 3. Let k € N be the maximal number
such that there are caps Cy, ..., Cy of §"—1 with int(C;) Nint(C;) =0,,i # j, and
foralli =1,...,k|C;i| =|S""'|/R. By Lemma 5,

37"R <k <R. (24)

Let G; : " ! x ... x §"71 — {0, 1} such that G; (&1, ..., &y) = 1 if the following
three conditions hold:

Exactly n points &, , ..., &, are chosen from C; and they are affinely independent,
aff(&,, ..., &,)NS" ' C ¢ and vol,—1([&¢,, ..., &, 1) = VOlg 5,
(25)
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where volg , is defined by (16). Else we put G; (&1, ..., &nx) = 0. Note thatif G; = 1
then there is a facet of Py in C; with volume at least volg ;.
We have foralli =1, ...,k,

N 1 N-—n
E(G) =P(Gi =1 = <n> (1 - E) EHR ¢, (26)

where Hp ¢, is given by (17). Indeed, the first equality holds since G; takes only
the values O and 1. We have G;(§1,...,&y) = 1 if and only if there are exactly
&0y, .... &, € C; such that for all £ ¢ {£1,...,¢,} we have x; ¢ C; and such
that Hg ¢, (&¢,, - - -, &,) = 1. We have (2’) choices of £, ..., 4, € {1,..., N}. The
requirement that for all £ ¢ {¢1,...,¢,} we have x;, ¢ C; gives rise to the factor
(1 — %)N_”. The conditions (25) mean that Hg c; (¢, ..., &) = 1. Thus (26)
holds.
Foralli, j =1,...,kwithi # j,

N N — 2 N-—-2n
E(G;-Gj)=P(G; G, =1) = <n)( ] ”) (1 - E) (EHg.c))%. (27)

Indeed, G; - G j takes only the values O and 1. Therefore, E(G; -G ;) = P(G;-G; = 1).
We have G; - G; = 1if and only if G; = 1 and G; = 1. This holds if and only if

there are two disjoint sets &, ..., &, € C; and &,,,...,&p,, € C; such that for
all £ ¢ {€y,...,£2,) we have & ¢ C; U C; and (25) holds for &, ..., &, and
&0yi1s -+ &py,- There are (]Z)(Nn_") choices of ¢1,...,¢, and £,41, ..., ¢2,. The
condition & ¢ C; U C; for £ ¢ {{1, ..., £2,} gives rise to the factor (1 — %)Nfzn.
Since (25) holds for &,, ..., &, and &, ..., &, we have Hg ¢, (&, ..., &) =
HR,C,-(EZ,,H»-HsSZZ,,) = 1. Moreover, EHg ¢, = ]EHR,C], foralli,j =1,...,k.
Thus (27) holds.
By (26)

k k N 1 N—n
E(ZG,-) =ZEG,-=k(n>(1—E> EHg.c,. (28)

By (26), (27) and G? = G,
k 2 k
(o)) e
i=1 i,j=1

k
= E(GiG))+ Y _E(G)
i#] i=1

N N — o) N—-2n
= k(k — 1)<n>( ) ") <1 - E) (EHg.c,)?
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N 1\
+ k( ) (1 - —) EHg c,. (29)
n R
By the Cauchy-Schwarz inequality and as EHg ¢, > 0,
k k 2
- EG;
P(ZGi >0> z%. (30)
i=l E ((21:1 Gi) )

By (28) and (29),

(%) (1= 0" " Bt

=
k=D (=3 @Hre)? k() (1 - )" B,

_ k) (1= )" " EHg ., an
k=D (1= 2) " EHg e, + (1= D)V

We choose R = ] - The sequence N*(1 — IOgN )2N=21n N > 3, is decreasing and
2N—-2n 2N—2n
lim N2 (1—l> = lim N2 (1—1°gN) =1.

N—00 R N—oo N

Therefore, by Lemma 13 and (24), for sufficiently large N the numerator of (31)

satisfies
N 1 2N—2n
k() (1 - E) EHgc,

_ LN (N) 1 (log N)" [S" 2|V} ,(n = DI(n — )3

= 3tlogN\n)N2 N7 3.25. gy,
1 (ogN)" /NN 1 ISV, (= DI = 1)
= 3l N N° 25 . gni-2n-ly, ‘

For sufficiently large N,

<n>m<n—1)!(n 1y
It follows,

L N | 1 2N—-2n - 1 (lOg N)n—l |S’1_2|V13,n(l’l _ 1)n—4 0
n - E R.Cy = 3n+3 N 24 . 71"2_2”_1V2 " - (32

( _ 1)n—4.

\Oll\)

and we have estimated the numerator of (31) from below.
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Now we estimate the denominator of (31) from above. Clearly, for large enough

N3
N—n
(1_%> §exp( (N—n)logN)

1 nlog N 2
_ < —. 33
NeXp< N )‘N (33)

We have for sufficiently large N,

L2 N=an | 2logN N*2"<e N=2n o)) <2
- = = - xp | — —.
R N = &P N % = N2

By Lemma 13 and (24),

N-2n
(k — 1)<N _”> (1 - 3) EHg.c,
n R

N N" 2 (logN)" /m\n(n=2) 3, n—
Sgnara w(3) D=,
, (og Ny"! (ﬂ)»ﬂfzﬂ (n— "3

2= (5 .

1S" 2| V.

So we have shown that for sufficiently big N,

k 1, qn=2y3 _ 1yn—4
(log N)"=1 [S"2|V, (n — 1)
P(E G; >O) > 3N ——

2
24 .n 2n 1V2,n

log N)"™! s \n=21 (n — 1)" 3 2\~
n N

N 2
on 2_2n—6 V2

1,n

3n+3 2n2—4n—1 V2n

We have

k
IP’( max vol,_ 1(F)>voan) 2P(ZG,- >0). (34)
FeF(Py) —

Indeed, if Zle G; > 0 then there is ip with G;, > 0 and consequently G;, = 1. This

means that on the set Zf-‘zl G; > 0 we have maxpcr(py) vol,—1(F) > volg ,. By
(34),
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E max vol,_i(F) > volg n[P( max vol,_(F) > volR,n>
FeF(Py) FeF(Py)

k
> volg . P (Z G; > 0) ,

i=1

where volg , is defined in (16). Thus

log N 1, Sn—l V3 2n2—2n—7
E max vol,—(F) > 0g NV vol,—i( 1) Ln ~ )
FeF(Py) N VOln—1(B§'_ )y Vo, 3n+3 g2ni—dn—1

5 Strategy for the proof of the expected minimum

We prove the upper and lower bounds of Theorem 2 separately in Sects.7 and 8. The
n = 2 case is known so here we focus on n > 2. We start with an outline of the
arguments.

Assume that the n points &, ..., &, form a facet of the random polytope Py in
$"=1. The volume of the facet depends on both the height of the cap defined by the
affine hull H of the n points as well as the shape of the simplex inside H. On average,
we expect the volume of the facet to depend (up to constants depending only on the
dimension) only on the height of the cap because the expected volume of a random
simplex in H N $"~! is equal up to constants to the maximum volume of a simplex
contained in H N §"~1.

However, when one instead considers the minimum volume of a facet, we show that
the volume depends on more than the height of the cap. It also has a strong dependence
on the shape of the simplex formed by the n points inside the cap. In order to make
this dependence precise, we first establish Lemma 14 which gives an approximation
of the distribution of vol,_1 ([&1, ..., &,]) where &1, ..., &, are points that are chosen
randomly from §"~2 with respect to the uniform measure. We show that when n = 3,
the CDF P(vola([&1, ..., &]) < t) is equal up to constants to #*/3; when n > 4, the
CDF is equal up to constants to ¢. This fact explains why the asymptotics in Theorem
2 are the same for all n > 4 but differ in the n = 3 case. We give an overview of the
proof strategy for the upper and lower bounds in Theorem 2 below. For simplicity we
describe the proof for the case n > 4. The proof in the n = 3 case is similar.

Upper bound in Theorem 2. We start by choosing k ~ N pairwise disjoint caps on
5"~ such that the volume of each cap is |S"~!|/N. We then show that one of these
caps is likely to contain a facet with the desired volume. This is done by defining the
function G, +» 1 <i < k.Foreachi, G, .+ 1s the indicator function for the event that
(roughly speaking) the i-th cap contains a facet of Py and that the volume of the facet
is less than ¢/ N. The precise definition of Gi,, is in Equations (71) to (73). The proof
shows that
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k
~ C
]P’(ZGZ-J>O) > 1=~

for some constant ¢ depending only on n. This inequality is established, as in Sect. 4,
using the second moment method, i.e., the Cauchy Schwarz inequality.

Therefore, the main difficulty in the proof of this result is to obtain a suitable
upper bound on E((ZL] G i ,)2). This is accomplished in Sect. 7 after first obtaining
bounds on the closely related function ﬁ,,c which is introduced in (57) and analyzed
in Lemma 15.

Lower bound in Theorem 2. The proof of the lower bound is somewhat simpler
than the proof of the upper bound. We show in Proposition 16 that the probability
that there exists a facet with volume less than 7 is at most some constant times >N 3.
Then the proof of the lower bound on the minimum volume facet follows by setting
t = ¢N~3/? and using Markov’s inequality.

6 Technical Lemmas for the expected minimum

The first lemma establishes upper and lower bounds on the CDF of
vol,—1([&1, ..., &,]). Miles [26] computed the expected volume of a random simplex
in a Euclidean ball. He did not use the CDF explicitly.

Lemma 14 Let &y, ..., &,41 be i.i.d. uniformly random points from S"~. Then:

(i) Forn =2,
@) /783 < P(voly (&1, &, £3]) < 1) < 342127, (35)

where 0 < t < m for the left hand side inequality and 0 < t for the right hand
side inequality.
(i) Foralln > 3,
ant < P(vol,([&1, ..., §nt1]) < 1) < byt, (36)

where 0 < t < |B}| for the left hand side inequality and O < t for the right hand side
inequality. The constants are

-1
1 1 gn-2pn+l p@e=D2ly =)\ el
= = |25n|_1n ( g ) F( 2 ) (37)
and —_— 5
n!|S"—=|" 1 n“—3n+2
= B o ). (38)
|Sn=1|n 2 2

Proof (i) We start with the lower bound and we consider first the case t < 1. The point
&) is chosen arbitrarily. The points &, &3 are chosen from the cap S' N H~ (&, 1 —
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2-1/3¢2/3) Here we used that r < 1. The height of the cap STNH= (&, 12713273
is 27173213, By Lemma 3, the surface area of the cap sin H(,1— 2-1/352/3y
is 2 arccos(1l — 123 /21/ 3), which is greater than 24/3¢1/3 Thus, the measure of all
choices (§1, &2, £3) as in this paragraph is at least (24/3t1/3)2/(271)2 = 22/3t2/3/n2.
On the other hand,

vola([61, &, &1) = (1/2) voli ([&2, &1)d(&1, aff (£2, £3)) < 1.

Therefore, fort < 1,

P(vola([&1, &2, &) < 1) > 20)*/3 /=2

We extend thisto all # withO <t <mw.Letl1 <t <. Then
P(voly([£1, &2, £31) < 1) = P(vola([£1, &. &) < 1) = 223 /n? > (20)* /x®/.

Now we show the inequality from above. We may assume that £ = e¢; = (1, 0).
For any choice of &, we compute the measure of all &3 such that vol, ([£1, &2, &3]) < t.
We parametrize £, = (cos ¢, sin ¢) with ¢ € [0, ]. Because of symmetry itis enough
to consider the range [0, 7] instead of [0, 27r]. Then ||&] — & || = 2sin(¢/2) and

t = voly([§1, &2, &) = (1/2) 1151 — &211d(&3, aff (€1, £2)),

or

t/sin(¢/2) = d(&, aff (€1, £)). (39)

Since d($3, aff (&1, 52)) < 2, we have min{2, t/sin(¢/2)} > d(§3, aff (&1, 52)). The
hyperplane, i.e. the line through &; and &; is given by H ((cos %, sin %), cos %) By
(39) we can choose any &3 from the set

511 (oot - )

NHT ((cos % sin %), cos % + m) , (40)

where both half spaces contain the point cos %(cos %, sin %’). It follows,

P(vola([1. &2, 83) < 1)
1 /g
-

NH™ ((cos%,sin %),cosqz—) + —d,>‘d¢. 41

!
sin 5

S'nH~ ((cos%,sin%),cos%— ,’¢>

s 7
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We split the integral into two parts, from O to 10 ¢9 and 10 ¢ to w. We explain why
we do this. If cos % + W > 1, then (40) equals

S'NnH™ ((cos%,sin%),cos% — (42)

t
—sin<¢/2>) :

Let ¢9 be the unique solution of # = sin %(1 —cos %). The value ¢y is the exact value
such that the set (42) equals the set (40) for all ¢ with 0 < ¢ < ¢. Since sinx > 2;)‘

3
for0 <x < Fandcosx <1— ; for 0 < x < 7 this implies # > 7?2 (we apply the
inequalities to x = ¢ /2 so that we cover all ¢ e [0, ]). Since sinx < x forx > 0

and cosx > 1 — )‘72 forx > Owe gett < ¢8/16. Altogether,
74/3,1/3 < ¢ < (2n)2/3t1/3. (43)

The cap (42) has height 1 — cos % + sm(’w By Lemma 3, its surface area is equal to

2
2 arccos (cos ? — ;> < 2 arccos (1 - ¢_ — ﬂ_t> ,
2 sin(/2) 8 &

. . . 2 . .
using the fact that arccos is decreasing, cosx > 1 — % and sinx > 2—" Since

cosx <1—= and arccos is decreasing we have x > arccos(l — —) Usmg this and
that the square root is a concave function,

2
2arccos<1—%—?) /—¢2+712—<\/»¢+271\/7

By this and (43),

10¢ 2
/ 02arccos (l—¢——ﬂ—t> do
0 ¢

10(2n)2/3 173
,/ ¢ + 2:1\/7d¢
2 1

— 1006376276 41320 /573 <3417 -13.

2
3

(44)

This leaves us with the integral

/n 2 arccos (cos 9 — ;> — 2 arccos (cos ¢ ! ) d¢. (45)
10 2 sin(¢/2) sin(¢/2)
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By the mean value theorem there is o with cos % — < a < cos %5 +

!
sin(¢/2)
and

3
Sn@/2)

arccos (cos % + m) — arccos (cos % ~ D /2))

2t/sin($/2)
1

VIi—a?

= arccos’ (o) = —

As \/11_7 is an increasing function on [0, 1), we get

arccos (cos g — sm(fw) — arccos (COS ¢+ ST /2)) 1

2/sin(¢/2) NiEre

1
< .
2
¢
\/1 - (COS 2+ sin(é&/Z))

We have, using %x < sinux,

2 [ 2
t COS 5 t
1—(0059—}—,—) :(sin%)z—Zt z_
2 sin(¢/2) sing  (sin £)2
2 2.2
7'[2 ¢ ¢2

By (43), ¢ > 10¢g > 10 - 2%3¢13 ie. t < ¢3/16000. Therefore, the previous
expression is greater than

¢2 B ¢)2 ¢47T2

72 '8000 160002

For 0 < ¢ < 7 we have ¢4 < n2¢2. Thus,

72 78000 160002

5 (1 1 1 ¢?
=20\ 5 T T ) = on
10 2000 1600 20

¢2 ¢2 ¢27.[4 2 1 T 7.[4
72 8000 160002

and therefore

2
\/1—<cosf+.;> Zq—s.
2 sin(¢/2) 5

@ Springer



B. Leroux et al.

Altogether,
t ) t
arccos | cos— — ———— ) —arccos | cos — + ——
2 sin(¢/2) 2 sin(¢/2)
2t 107t
= =2
% sin % ¢
Ast < m and with (43), the integral (45) is at most
13
/” &’z”d(p _ 2B e (20027 )
10-24/3¢1/3 ¢ 2]/3 21/3 T
Fort < 0.09
" ? 0, ! 3
2 arccos | €os 3 — —— | —arccos | cos 5 + —— dp < —13.  (46)
1060 sin 5 sin 5 23
By (41), (44) and (46)
I 2 2
—13 <342 .13,
23

2
P(vola([&1, &2, &]) <1) < 34113 +
Thus we have verified (35) for 0 < r < 0.09. We extend thisto all r with 0 <t < 7.

For ¢t with t > 0.09 we have
2
3 .

P(vol([£1,42,83]) <t) <1 <38-¢

(ii) First we show the left hand side estimate of (36). Clearly,
voly([€1, - .-, Enp1]) = (1/n)d(Entr, aff (51, ..., &) vol—1 (&1, - . ., &)
and therefore
P(vol, ([&1, - .., &n+1]) < 1)
=F {d@”“’ affE.. ) < volnq([sn]t, L ED } ' !
Trivially,
P(vol, (&1, ... &s1]) < 1)
> P{vol,([&1, ..., &+1]) <t and d(0, aff &y, ..., &) < 1/n}.
With (47)
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P(voln([£1. ..., nt1]) < 1)
P {d(snﬂ, aff(§y, ..., £n)) < n d(0, aff (51, ..., £n)) < 1}
vol,—1([§1, ..., &) n
P{d(0, aff (&1, ..., &)) < 1/n}. (48)

By the Blaschke-Petkantschin formula (9),

P {d(0, aff (51, ..., &) < 1/n)

1
|Sn 1|n/5n1 /Su] < 0aff(&,...,g,,))§;>d§1...d€n
_(n—l)!/;/ /
s Sy Jaa 0. pynsr—1

/ VOln_l([fl, n’gl’l])dgl dgndé‘dp
H(,p)ns-! (1-pH2

The n-fold integral over H (6, p) N §"~! is independent of §. Therefore the above
expression equals

(n—1)! /1/"/
|sn=1pn=t H(er,p)nsn—1

vol,—1([§1, ..., &)
o dg; - - - dg,dp.
/H(e] pnsn—1 (1 — p2)n/2 &1 §ndp

The set H(e1, p) N §" ! is a Euclidean sphere with radius \/1 — p2. We put & =
niv/1 — p? and have d§; = (1 — pz)%dm. The above expression equals

(m—11 [ln
e | [ el b = T - andp,

We apply Lemma 6 in dimension n — 1 to get

P {d(0, aff (51, ..., &) < 1/n}

s T resh\ resh
ST F((n_zl)Z) r) ré) (49)

1
flo-
0

By Bernoulli’s inequality,

2
2 ; 712*)1*

R et 5/ (1—ph Fap<

2n T n n2 0 n
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and we get
cn/2 < IP{d(O, aff (&1, ...,En)) < l/n} < ¢y, (50)

where

n—1)=2 n— n—1 n—
B N e 2“><F<Tl>) ) (51)

Cp = .
n nlsn71|n71 l—1((n—21)2) F(%) F(%)

Now we estimate

1
P{d(§n+1,aff(§1,...,§n)) < n d(0, aff (&1, ... &) < ;}.

Volnfl([é:lv 75}’!]) | (
(52)

First we estimate this expression from below for the range 0 < ¢ < # The simplex

with greatest volume in a Euclidean ball is a regular simplex. The volume of a regular
\/m+1 ( s
V2

vertex is _/ ms. This means that the largest regular simplex inside a Euclidean ball
with radius 1 has sidelength /2(m + 1)/m and volume /21 (2t )m/ ? Therefore,

m

voly_1 ([&1, .. sn])_(*/’7 ( " )

D!'\n—1

simplex in R™ with sidelength s is

)m and the distance of its centroid to a

and, for M := ZL' (=L )% (52) is greater than

P{d(&t1, aff (&1, ..., &)) < M |d(0, aff (&1, ..., &)) < 1/n}. (53)

For each choice &1, . . ., &, there is a hyperplane H (6, p) spanned by this choice, with
distance from the origin p and unit normal 6. Then we may choose &, from the set

S"'nHY @, p+M)YNH 0, p— M), (54)

where HT (0, p + M) and H™ (6, p M) are the halfspaces containing p 6. By the

condition d(0, aff (&1, ..., &)) < Z we get |p| < 1 and by the assumptions ¢ < ﬁ
and n > 3 we get
1 2
PEM St <2 (55)

The surface area of (54) is at most that of the right cylinder (without top and bottom)
V1—(p+ M)25"2 x [p— M, p+ M]. The surface area of the cylinder equals

n=2
|S"72| (1 — (p + M)*) 2 2M. By (55), we can apply Bernoulli’s inequality and the
surface area is at least

)
15772 (1 - ”T (p + M)2> oM
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|S=2] n—2 (1 m!)z 2tn!
> 1- -+ — | ==,
Je 2 \n Jn Jn

where we used (}le) < e. Therefore, for all r with0 <t < # we may choose

&,41 from a set of (n — 1)-dimensional volume at least |S:1/_;| % Thus, for all r with

1
OSZ‘Sm,

nt
|

1
d(0, aff(&q,...,&)) < —
vol,—1([E1, ..., & ( aff (& & )) < n}

P {d(gn-i-la aff (&, ..., En)) =

tn! |87
> P T (56)
Jey/n 157T]
By (48), (50), (51) and (56),
P(vol,([€1, ..., &ns1]) < 1)
- —1)2+1 - n—1 _
AR D R N G s I 0 G A R ),
Veym nisttn peestty T (3) r(z)
We have established the left hand side of inequality (36) for the range 0 < r < ﬁ
We extend the range to 0 < ¢ < |B}|. Let ﬁ <t < |Bj|. We have
P(volu([&1, ...\ &ns1]) < 1)
1
>P (Voln([&, s En1l) = —‘>
nn!
12 _ n—1 _
L (w1 e (P ) T res
T onnt | Ve/n n|S Tl peas?y \T(E) r')
12 _ n—1 _
ot (L s re fresh ) resh
~ B\ Vevnn?lsmln pesty | T() rd)
Now we show the right hand side estimate of (36). We have
P(voly (41, . - ., Eir1]) <1)
nt
=Pld(t,4,affE, ..., )< —
{ (Enraffr. 80) = G snp}
o [ P{s (1. aff (6 s>)<$}ds---ds
T ysn=tm Jign-1yn ntl - Sentls b "= Vol ([ .. &nl) : "

We estimate the integrand. Let H (6, p) be the hyperplane spanned by &1, ..., &,
where 0 is its unit normal and p its distance to 0. The set of all &,4; with
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d(§n+19 aff(%'], .. ";:n)) = Vol,_ 1([§| ) is

.....

S”—lnH+(9 p+ n )ﬂH‘(G p— nt )
' VOIH—I([%‘lv cee s}’l]) ' VOln—] ([Sl’ e ‘i:n]) '

where both half spaces contain the point p 6. By Lemma 3 the above set has area

min{l, p+ o}

_ —_1U& n=3

1§72 " 1—s>7ds
nt

max{=1, p— G e D )

= o1 (B

where we used that the integrand is smaller than 1. Thus,

nt

vol,—1([&1, ..., & }

P {sm L (Bt aff €L 60) <

1§72 2nt
TS voly 1 ([&1, ..., En])

Altogether, using the formula of Blaschke-Petkantschin (9),

P(vol,([£1, - -, &ns1]) < 1)

_ 2n1|8"" 2|/ / -d&,
- |Sn l|n+l sn—1 sn—1 VOln 1([51,...,&_ )

2nlt| S 2| 1
= |Sn— 1|n+1 (1 - 2)n/2 déy - --dg,dodp

sn— I(H(Q p)NSn— l)n

2nlt|S" 2|

= —————d& - - - d&,dp.
|Sn l|n / /H(0 pnsi—lyn (1— 2),,/2 %_ é;-n 4

The set H(0, p) N $"! is an (n — 2)-dimensional Euclidean sphere with radius
v/ 1 — p?. Therefore, the previous expression equals

2nlt|S"~ 2|n+1
Sn 1|n /(l

_ 2mitl ST 2|n+1-/ (1 — w2 y1d
s 2 g P
nle]S"2 1 w2 —3n+2
T e (5’ 2 >

The claim follows. O
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We define a function that is instrumental to estimate the expected minimal volume
facet. For the maximal volume facet we introduced a similar function (17). Its differ-
ence reflects that we consider the minimal facet and the maximal facet. Let t > 0 and
let I:I,,c O LS {0, 1} be such that I-L,c(él, ..., &) = 1if the following holds:

aff(é1,...,&)NS" ' CC and
X i (57)
vol-1 (61, &) = 1 (1 - d2(0,affGr, . 6)))

Else we put I:I,,c(él, o &)=0.

Lemma 15 Let C be a cap of S*~ with vol,_1(C) = |S"~|/N. Then:
(i) Forn =3,
4 PR 17127 53
=157 S B c = -3
7310° N3 ' 16 N3
where 0 < t < 1 for the left hand side inequality and 0 < t for the right hand

side inequality.
(i) Foralln > 4,

(58)

12 3a2_, - EH, ¢ 5 2 (n>n27n
N"32 b n=2 = (n— 3 — Dys2) = N2
(59)

where 0 <t < |B) - | for the left hand side inequality and O < t for the right hand
side inequality. The constant a,_ is given by (37) and b,,_1 by (38).

Proof We proceed as in the proof of Lemma 13. By definition,

~ 1 ~
Bl =g [ | At g6 s,

Noe

We apply the spherical Blaschke-Petkantschin formula (9),

- (n — 1!
EHI’C S” 1|",/ /

/Htc@],.. &)

(H©.pNs)"

|[€la 9én]|

Let ¢ (N, n) be the angle of the cap C. Choosing R = N in Lemma 4,

1 L
|Sn—l| n—1 T |Sn—l| n—1
=——— <¢(N,n) <U:==|—— . (61)
<N|B§—‘| ¢ 2 \N|B}TY
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As in the proof of Lemma 13, the first condition in the definition of I:I,,C translates
into arccos(f, e1) + arccosqg < ¢ (N, n) (see (19)) and we get

(n — 1)l S$n=2"

EH;c = |sn—T|n

1
/ / X(arccos(@, e1) + arccosq < ¢ (N, n))
0 Snfl

n2—2n—1

I(q, (1 —¢» 2 dédg,

(62)

where we assume that the hyperplane H with C = §"~! N H~ is orthogonal to e;.
Moreover, using the substitution & = (1 — qz)%g‘i,

I(g.1) = / x (volu 1(&1, - ) < 11— D))
(H(e1,q)NS"—1yn
&1, ... &l] & d§;
(1=g)"T iy 1721 — )T
1
MEED

/(S’H)n x(vol,—1 (&1, - .- tnl) < t)vol,_1 (21, .. ., ¢nDdgy -+ - dgy
= B(x(volu—1 (121, . &aD) = 1) Volu 1 ([21 -, &aD))-

Thus
I(CL t) = A P(X (VOlnfl([é‘l’ MR ] é‘n]) E t) VOlnfl([é‘h MR Cn]) 2 S)ds

t
= [ B = ol b < 1), (63)
0

Upper bound on Eflt,c. To get an upper bound on EI:I,,C we firstupper bound 7 (q, ).
By (63), and Lemma 14 applied to the dimensionn — 1 > 2, we get for all t > 0,

I(g,1) <t -P(Voly—1([¢1, -, &al) < 1) < Li1(2), (64)

where I, () = by 12 if n > 3, by, is given by (38), and I»(r) = 34213 by (35). By (62)
and (64), and then by (21),

B B (n— ])!|Sn—2|n
EH; c < In—l(f)w

)12

1 .
/ f x(arccos(, e1) + arccosg < (N, m)(1 — ) = 46dg
0 n—

_ (n— l)!|Sn_2|"+l
= n—l(f)w

L pm 22 _on—
/ / x(¢1 +arccosg < ¢(N,n))(1 — o) =4 G2 ¢1dgrdg.  (65)
0 JO
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By (61) the double integral in (65) is at most

n2—2n—1

1 T
/ / X (g1 +arccosg < U) (1 —g*) 2 sin" 2 ¢1dpidg
0 0

1 il2 n— T
5/ x (arccos ¢ < U) (1 — ¢?) : ldq/ X (@1 < U)sin" 2 ¢1dg.
0 0

Therefore

(n _ 1)!|Sn—2|n+l
|Sn—l|n

1 71272)171 Y
/ (1-¢H"7 dgq / sin" =2 ¢1d¢y . (66)
c 0

os(U)

EH, c < Ii-1(t)

Since sin ¢ < ¢, we have fOU sin" 2 ¢1deo < fOU ¢>’f*2d¢1 = U"‘l/(n —1). With
q = cosa and dg = — sin wde,

1 n2—2n—1 v 2
/ (1—¢> 7 dg = f (sina)” ~*"da
c 0

os(U)
U -2
S / anz_znda e u
0

Altogether, using the previous estimates in (66), we get forn > 3 and ¢ > 0,

EH, c < I—1(1)

(n — 1>!|S"—2|"+11<n)n71 1"
|$7=2]

|Sn71|n N )

2
( _1)2 _ n—1
(5" |s" 1
(n—12 \ |83~

< L ONIS" 2 (/)" (= 1" — 1)

The claimed upper bounds (Equations (58) and (59)) follow.

Lower bound on EI:I,,C. Similarly to the upper bound, first we get a lower bound on
I(g,t). For n > 4 and by (63),

t
I(g,1) = /0 P(voly—1([Z1, ..., &) < 1) = P(volu—1([S1, - ., Su]) < s)ds.

An—1

By (36) we have a,,_1 < b,,_. Therefore ol =1 and

Ip—1

I(q,0) = /0 P POl 1 ([& - Ga) < 1) — P(vol,_1([£1. ... &u]) < 5)ds.

@ Springer



B. Leroux et al.

We apply (36). For ¢ with 0 < ¢ < |B} |,

ap_| Ip—1

2b,_1 ] 2 2by 1 !
I(g,t) > / an_1t —by_15ds = ay_1ts — =b,_1s
0 2 0
3a?
n—1,2
= t-=1 t).
8b,_1 _nil( )

Now we get a lower bound on I (g, ) for n = 3. By (63) and with ¢ := 9/10°,

ct
1q.0) = /0 P(vol,1([21. &2, &3]) < 1) — B(volu_1([&1. &2, ¢3]) < 5)ds.

By (35),
. 2 2
r(21)3 2 s [ 23 2 4 s
I(g,t) > o+ — 342s3ds > ct3 | — —206-¢3 Zﬁﬂ = 1,(1).
0 T3 T3

It follows from this and (62) that for r with 0 < ¢ < |B§_1 [,

B (n— 1)!|Sn72|n
EH;c = Ln_l(f)W

1 VLZ n—
/ / X (arccos(@, e1) + arccosg < ¢(N, n))(l — q2) 2 1d@dq.
0 Jn-1

By (21), for  with 0 < 7 < |By ™|

(I’l _ 1)!|Sn72|n+1
|Sn—1|n

EH,c > 1, ()

n2—2n—1

1 pm
/ f X(qbl + arccosg < ¢ (N, n))(l ) sin 2 ¢1dep1dg.
0 JO

By (61) the double integral is greater than

n2—2n—1

1 14
/ / x (¢p1 +arccosqg < L) (1—¢>) 2 sin" % ¢1d¢dg.
0 JO

Since x(¢1 + arccosqg < u) > x(¢p1 < u/2)x(arccosq < u/2), the double integral
is greater than

1 L 2 n2—2n—1 T L . n=2
x arccosg < = (1—g9) 2 dg | x(¢1= 7 )sin ¢1dey.
0 0
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We have L/2 < . Therefore, for r with 0 <t < |BY],

- (n — DY|sn=2m+t ol 5 n2=2n-1
EH;c > 1, () (1—-¢%) 2 dq
' ol |§n=tin cos(L/2)
L/2
/ sin"2 gy dey. (67)
0

Since sin ¢ > %4’1,
L/2
f sin" 2 ¢1dgy
0

) n—2 oL/2 - 1 1 n—2 |Sn_1| (68)
> = ¢ dpr = —— | = —
T 0 2N(n — 1) \« |B§ |

. . n2—2n—1
With ¢ = cosa and dg = —sinada, fclos(L/Z)(l —¢») 2 dg =
fOL/z(sina)”z_Z"da. Using again sino > %oe for 0 < a < m/2, this is greater
than
o) n?—2n % ) 1 2 n?=2n L (n—l)2
“ f o —ana - _ - (= =
bid 0 n—D2\n 2
1 n2—2n 1 |Sn—l| n-l (69)
=N = :
(n) 2(n —1)? <|B§‘|)
Altogether, by (67), (68) and (69),
_ 2_p-2
- (n—DNYS" 2l 1\
EH; c =1 t — | —
ez L O \5
n—1 n—1\ 1
|S IN,,,H 1 "
|Sn=2] 2(n— 12\ |By7"|
L, () (n—D(n — )" 3|8" 72
- N 47Tn2—n—2 :
[m}
7 Expected minimum upper bound, n > 3
Proof of the upper estimates in Theorem 2,n > 3. Let N € Nandlet Cq, ..., C
be a maximal set of caps in §”~! such that
vol,_1 (C)) = vol,_1(S""HW/N i=1,...k (70)
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and such that for all i # j, int(C; )ﬂmt( ) #.ByLemma5,37"N <k < N.We
are now defining the function Gl,, sl o sl {0, 1}. The definition of
C~},~, ¢ 1s very similar to the definition of G;. Their difference lies in conditions (73) and
(25). Let t > 0. We define Gi’ (&1, ..., &n) = 1 if the following conditions hold:

Exactly n points &, ..., &, are chosen from
C; and they are affinely independent, 71
aff(&,,...,&,)NS"! € C;,and (72)
n—1
voly—1 (&, - .., &, ) < (1 —d*(0, aff (&, ... £,))) 2 . (73)

Else we put G,-J(El, . Ev)=0.
In the same way as we established (31) (with R = N) we arrive now at

N
— k(n) _%) EHt Ci 74
- N—n 2\N-2n  ~ N—n (74)
G- D0 (1= 2) e + (1)
We will upper bound the reciprocal of this. For N > 4n + 1 we have
2\N—2n 2\ N=2n _N
(1-%) _(l—ﬁ) <1_l>
1\2(N—n) — _ 1
(1-%) N N
1 N—=2n 1N
=(1- — 1— —
N —1 N
=(1—- —— 1—
(N —1)2 N —1
< |1 2 - <1+ "
- N—1 - —1
Thus, for N > 4n + 1 and using (Nn_")/(l};l) < 1 we have
k=" (1 -2 "EA, 4

k(N) (1 _ %)Z(N n) EHI,C] - N—-1

n
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Moreover, since (1 — )V ™" > (1 — )V 1 = @ > 1/e,
N—-1

(1- l)N_" 3 1 - e (76)
()0 e, K (- ) Ee, KB,

n

By (7) we have k > 37" N. This and the estimate (59) for Efltﬂcl gives forn > 4,

(1 _ _)N n
kM) (1= )" EA,

e 3N 32 by 2
TN 17 3ap_ (n = Dl(n — 13|52

22
- 1 32¢-3"lpen—= .p,_ 1n” —n=2 a7
~ 2N fl,%,l(n— 1)n—=3|§7-2| ’

where a,_1 and b,,_1 are defined in (37) and (38). Similarly, by (58) for n = 3,

3
(1— )" _ s NP eGn) _ 30°nen

(=) TR, T TN T W

(78)

By (74), (75) and (77) for dimensions greater than or equal to 4 and sufficiently large
N,

k ot Zp_a —1
~ 4n 1 32e¢-3""'neN-n .b,_ 171" n-
P E G; 0)]=>{1 -
(i_l it = ) _( +N—1+t2N al%_](n—l)” 3|Sn 2| )
Cn

>1 - —, 79
>1- -2 (79)

where ¢, is a constant depending only on the dimension n. Similarly, by (74), (75)
and (78) for dimension 3, we get with a suitably chosen constant c3,

k s 3 9\l
- 12 30°r2eN-3 c3
P(Zci,,>o>z<1+N_l+ AN ) >1-—55 B0
i=1

We show now

k
{(sl,...,sN):Fergi(r} )voln_mF)zs} c {@1,.. Z e —0}

N
i=1 S 315n= 1\

1)
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If Y5 Gis(&1, ... Ex) > O, then there is io with Giy (€1, ...,Ex) > 0. Since
éio,, takes only the values 0 and 1, we have é,‘o,,(&‘l, ..., &n) = 1. This implies
that C;, contains n points &, , ..., &, whose convex hull [&,,, ..., &, ]is a facet of
Py. Let H be the hyperplane with C;; = H™ N $"~1 and let L be the hyperplane
containing &, ..., &, . By assumption (72), L N N C;,. Consequently, by this
and assumption (70),

vol,_1(L N $"~ 1) < vol,_1(Ciy) = |S"7'|/N.

Thus with Lemma 3,

n—1
2

(1-d?©aff ... 6,) 7 1By | < vol,i (L7 N S" < Is" /N,

With (73), this gives

Nl

vol,_1([&,. ..., &,1) < (1 —d*(0,aff (&, , ... Szn)))% =< tN|B—§"1|'

Altogether, if Zle (~3,~,, > 0, then Py has a facet [&,, ..., &, ] with

|S"= 1

vol,—1([&¢y, ..., &, ) St ———F.
e N|BI Y

If minpcF(py) vol,—1(F) > s and Z;‘:l G,-,, > 0, then

1"
s <t

T ONIBYTY

N|By! . .
For ¢+ = sﬁ this estimate cannot hold. So we have shown that

minger(py) vol,—1(F) > s implies Zle (N}' N (&1,...,En) =0, i.e. we have
LS
’ 2|S”71\

shown (81). Consequently, by (81),

k
P i l,_1(F)>s) <P G a1, =0
(o0 =) <2(16, i =0)

By this and (79) in the case of dimension greater than or equal to 4,

. dcy|S" 1
P min vol,_1(F)>s)<—m> 82
<FEF1(PN)V i )_S) = N3s2|BMI (®2)
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and by (80) in dimension 3,

P . L ((F) > - 32-c3
min  vol,_ s —_—.
FeF(Py) : ) T N8/3533

Since Py C Bg, every facet has a surface area that is at most |B§l_l |. Thus,

1B~
IE< min VOln_l(F)>=/ ’ ]P’( min voln_l(F)zs)ds
0

FeF(Pyn) FeF(Py)

N-3/2
= / IP’( min vol,_{(F) > s) ds
0 FeF(Py)

1By~
+/ P( min vol,_1(F) > s) ds.
N-3/2 FeF(Py)
By (82) with a new constant ¢, we get forn > 4,

Cn

1B~
E( min vol,,l(F)) < N2 4 —/ S—zds <(1+c¢,)N2

FeF(Py) N3 Jy-3p

In the case of dimension 3 we have

b
]E( min VOln_l(F)) = / ]P’( min vol,_(F) > s> ds
FeF(Py) 0 FeF(Py)

N-8/5
= / P ( min vol,_(F) > s) ds
0 FeF(Py)

o
+/ IP( min vol,_{(F) > s) ds.
N-8/5 FeF(Pn)

By (83) with a new constant c3,

g
E( min vol,_1(F)) < N85 = / /34
<Fe]—'(PN) n—1( )) = + N8/3 s N s

8 Expected minimum lower bound, n > 3

(83)

Now we prove the estimates from below in Theorem 2, n > 3. In order to do this
we estimate the probability that there is a facet of the random polytope Py that has
an (n — 1)-dimensional volume less than ¢ from above. Proposition 16 assures that

@ Springer



B. Leroux et al.

this probability is less than cztzN 3 when n > 4, and it is less than czts/ 3N8/5 when
n = 3. Consequently, the probability that this volume is greater than 7 is greater than

. . . 5.8
1 — 212 N? in the case of dimension greater or equal to 4, and greater than 1 — 3 N 3

. . . _3 _
in dimension 3. Then we choose t = N~ 2 andt = N~ 5.

Proposition 16 Let&y, ..., £y be i.i.d. uniformly random points from S*~'. Let Py =

(51, ..., 6n]
(i) Forn =3,

P{3i1, in, i3 : (€, &, &3] € F(Py) and volo([&,, &y, &]) <1} < STAN3£3

(84)
(i) Forn = 4, b, given by (38) and for all sufficiently big N,
P{3i1,....in : (&, ... &) € F(Py) and vol,_([&;,, ..., &,]) <1}
|§7— 2|3 7 (85)
< 4ﬁb”_lt2N3L9"—1|2( — D" 4 — ).

In fact, the estimates in Proposition 16 give the optimal orders in ¢ and N. We skip
the proofs of the lower estimates because we do not use them for the proofs of our
theorems. The proof of Proposition 16 appears after the proof of the following lemma.

Lemma 17 For n € N with n > 4 there is N,, € N such that for all N € N with

N > N,,
1 112—4n+1 Sn 2| N=n
1—pH 2 1—s d
/O( Po) ( 5= 1|/( ) p

1S -
=22 =) (|S"—2|) N w3

Proof Before we begin with the actual proof we want to make sure that the left hand
side expression in (86) is well defined, i.e.

|S7— 2| na

Indeed,

K 2|/ 1 — ) S bn—ITEH TENG)

|§n=T| 2nymr(iE) TG 2
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Now we show (86). For p € [0, 1] we have

1 n—3 1 n—3
/(1—s2)Tdsz/ s(1—s>) 7 ds
P P

1 1= pT ®n
e - o
= [_(1_32)71] _d=r=z
n—1 p n—1
We note that
1|82 1
< . (88)
n—1]8"1 =27
Indeed, since I'(z 4+ 1) = zI'(z) and since I'(z) is increasing for z > 2,
1" 1 T(5+1) 1 rE ot
R 1S T ada T (1) /AT () T 2vE
By (87) and with the subst1tut10n s ={0-p 2) o ,le. p = (1 — sil)l/2 and
dp = —Lls = ?(1 — s 1) 17245, the left hand side of (86) is less than
n—1y\ N—
fl(l 2) e $"72 (L= pD)*T nd
o 7 B P
1! §n=2 N=n _
= / s 1—| s (l—s%) 1245
n—1Jy |S"1n—1
n—1
1 2z §n—2 Non _
- s = | |_s (1 —s%) 245
n—1 [Sn=1n —1
1! "2 N _
L1 (1—sm1)ds. (89)
n—1J,-% |[Sn=1n —1

We estimate the first summand. Since (1 — sil)l/ 2 \1[ for s € [0,27"7"], the
first summand is smaller than

n—1

5 277 gn—2 N—n
V2 P (1 — l s ) ds.

n—1 |S1=1n—1

We substitute t = :S:i —gandds = (n—1) ‘sn 2|dt and get

_n—l
3 .27 7 s

n—1 n— = b
V2 ('S - |(n—1)) /“"”'S T (1 — Ny, (90)
0

n—1\|s"2

@ Springer



B. Leroux et al.

B
277 | < 1. Therefore the integral in (90) is smaller than

By (88) we get W

1
_ _ I'n—23)
n—4 N—n
t 1—1¢ dt=Bn—3,N—-n+1)< ———.
/0 (=0 " DS S

n=3
Now we estimate the second summand of (89). We replace s by s~ »=1. Since

n=3
"4 < s7u=1 the integral does not decrease. Thus, the second summand of (89) is at

most
1 1 N — Sn—2 n— _
/ _, €Xp _us S_ﬁ(l—snzj) l/zds
n—1J13 (n — 1)|S"—1]

1 (N=m)|S" 2| _n /'1 _n=3 212
< — R —— ) 2 n—1(] — gn—1 d
n exp( (n— DS ] g $7 (L= sTT) s

_Lexp<_ (N —m)|s"?
V2 27 (n - sl )

Altogether (86) is less than

V2 (= DIS"NT (- 4y 1 (N —n)|S" 2|

n-1 < 577 ) N R W T
on

For each n > 4 there is N, such that for all N > N,, the first summand in (91) is larger

than the second. Thus, for each n > 4 there is N,, such that for all N > N,, we have

that (86) is less than

22 ((n - 1)|S"—1|>”3 (n — 4!

n—1 1§12 (N —nyn=3
O
Proof of Proposition 16 (ii) We have
P{3i1, ... in : (&, -, &, 1 € F(Py) and vol,_1 (&, ..., &,]) <1}
< P{[&,,....&,] € F(Py) and vol,_([&,, ..., &,]) <1}
= (]Z) / X(VOlnfl ([él EEREEI Sl’l]) < t)
|Sn—1|n (sm1yn -
(voln_l(aff(&-l, LLEDTN s"‘))N‘"
|Sn=1]
vol,_1 (aff &, ..., &)~ N s~V "
+ 5| dé---dg,, 92)
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where aff (&;,, ..., &,)" is the halfspace containing the origin. The case where both
halfspaces contain the origin does not play any role in the computation. Clearly,

voly—1(aff &y, ..., §,)7 N S"71) < |8"71)/2
and consequently,

()
- /Sn_l)nX(VOInl([gl, B e D I t)

|Sn—1|n (
vol,_i (aff &;,, ..., &) NS~ 1) q
|S” ll gl %-n
< 7 N4n (N> <27NN". (93)
n

By the Blaschke-Petkantschin formula (Lemma 7), the other summand of (92) equals

()i Lo
Sn lln sn—1 H(G p)ﬂs" ])n

vol,—i (H(®, p)* ns"~ 1) 1 %94)
|Sn=1) (1—p2)3

x (volu—1([n1, ..., ma]) < 1) volu—1([n1, ..., nuDdny - - - dn,d pdé.

By (1) in Lemma 3 for n > 3,

voli1(H(@, py ns"™H _ |$" 2
$7T] s 1|/ (=5 s

The integral in (94) is rotationally invariant with respect to 6. By this and (93),

P{3i1, ... in 2 &), ..., &,] € F(Py) and vol,_ (&, ..., &,]) <1}
<N_”+<N> (n—1)!
— 2N |Sn—1|n—l

S" 2| N—n 1
( - ) n
/ /H(el pnsn—lyn ( |Sn=1] / (1-p?»:2

x (volu—1([n1, ..., mu]) < 2) volu_1([n1, ..., mal)dny -+ -dnadp.  (95)

With n; = v 1- {la dn; =1 - 2) dé‘l,

/ x(voly—1([n1, ... na]) < t) volu_1([n1, ..., paD)dny - - - dny,
(H(er,p)nS"=1y"
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= /X(VOL’!I([(I? MR ;n]) S %)
(1-pH7

(Sn72)n

vol,—1([¢1, ..., & D1 — P

dg,.

By (63),

/ X (VOInfl([é'l, o) <t - Pz)_%) vol,—1([¢1, ..., &u)dEy - - -dE,
Sn—Z)n
n—1

I(l—p : 2 n—1
= IS"‘ZI"/ P s <vol,—1([¢1, ..., &a]) <t(1 = p )‘T)ds
0

<1872 = pH T P (Voloa (g1, Gl < 0= pHTT ).

By (36) the previous expression is smaller than

f X (VObu— 1 ([t oo ma]) < £) Vol 1 (01 - .., maDdryy -~ g,
(H (e, p)ns=lyr

< by-tlS" 2P (11 - p) )(1—p)

"€n+l

:bn_1|5n—2|n12(1 p)
where b, _1 is given by (38). This in (95) gives
P [fn»-~-7$in] & F(Py) and vol, (&, ..., &,1) <1}
e / i

Now we apply Lemma 17 (see also [29, Lemma 4.10]). For every n there is N,, such
that for all N with N > N,, the above expression is smaller than

_ n—2n
]2V—+bn 1t ( >(" DS 7] 272 — )"
n

|S” 1|n 1
-3

<|S" 1|) (n— 4!
|S” 2| (N—n)” 3

N™ | Sn— 2|3(
( n)n— 3 |Sn 1|2

— )" — 4.

N
=< N + Zﬁbn_lt
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For large enough N this expression is smaller than

3
2

4Jh”rm|

7ﬁjﬁm—w4m—@L

Thus we have shown (85).
(i) We consider now the case n = 3. By (95),

P{3iy, iz, i3 : [&,. &,. &1 € F(Py) and volo([&,, &, &, 1) < 1}

I /\

N3 () // |S1|/ N3 (ol 1. m3)) < 1)
|22 (H(e1,p)NS2)3 |52 (1 —p2)3/2

vola([n1, n2, n31)dnidnadnsdp

< N / / (ﬂ) x (vola([n1, m2, m31) < 1)
B 48” (H (ey,p)NS2)3 2 (1-— p2)3/2

vola([n1, n2, n31)dnidnadnzdp.

With n; = /1 — p2¢;,dn; = /1 — p2dg;,

/ x (vola([n1, n2. n3]) < t) vola([n1, n2, n31)dnidnadn3
(H(e1,p)NS?)3

t
:/ X <V012([C1, $,83D < 2)
(813 l—p

vola([¢1, &2, &3 (1 — p?)>/2deydgades.

Again, by (63) this equals

t

(1— p»*Is'P /07 P (s < vola([¢1. &2, &3]) < — 2) ds

t
<1 =p»28'Pr P <V012([§ls 0, 53] < T pz> :

By (35) this is smaller than

2/3
(1—p?)3 218" Pr - 342 <1 p2> = 342-87131%(1 _pz)g.

Therefore

P{3i1, ia, i3 : (&), &, &;] € F(Py) and vola([&,, &y, &i5]) <1}
3 3 N-3 5
< / (- ( zp) (1= pD)idp

2N 487
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N 1+p\"7
We putu = HTP, i.e. p = 2u — 1. The previous expression equals
N3 s 1
A N32.57n | (= 4u®) TN B du
2 1/2
N3 577 (!
=+ NEZE [ - du
2 23 Ji2
N} 55T (1 8
< <= +N3B(-,N-2
SELARS (3 3)
N3 s57Tn T(HTWN = )
=gy + N
2 25 T(N-1})

Since lim,_ oo M =1, for large enough N we get, with a bigger constant,
xT (x) g g g gg

P{3i1, i2. i3 : (&), &, &3] € F(Py) and voly([&;,, &y, &3 ]) < 1}
<57m - Ngt%.
o

Proof of the lower estimates in Theorem 2, n > 3. (iii) This is the case n > 4. Let
Py = [£1, ..., &n] be the random polytope. We have ming¢ 7(py) vol,—1 (F) > ¢ iff

Vit,...,in€{l,...,N}: [&,....&,1¢& F(Py)or vol,_1([&;,...,&,]) >1t.
The measure of this event is

P{V¥i1,....in €{l,..., N} : [&,,....&,] ¢ F(Py)or
VOln—l([gilv s Sl’n]) 2 t}
=1-P{3i1,....in: [&,,....&,] € F(Py) and vol,_i (&, ..., &,]) <t}

By (85) the previous expression is greater than

72|3

1 — 4/2b,_11>N?3 1S Y4 — )\,

|S” 1|2 (n—1
where b,_ is given by (38). We choose

2
|23

—1/2
' = <8J§bn_1N3W( - D" —4)1)
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and we get

P{Vir, ... in: [&). ..., &,] & F(Py)or vol,_1([&,,....&,]) >t} = 1/2.
By Markov’s inequality,

N-3/2 §n— 2|z

—1/2

t
E min vol,_(F)> =
FeF(Py) 2

(ii) In the case of dimension 3, we proceed similarly to the previous case (case (iii),
n > 4). We apply (84), sett = (ﬁ)WSN’g/5 and apply Markov’s inequality to get

t 1/ 1\
E min vobh(F)>-=-(——) N33,
FeF(Py) 2 2 \ 114x

9 Expected minimum, n =2

Proof of Theorem 2, n = 2. (i) This is known and it can be deduced from the expected
length of the smallest gap in a sample of uniformly random points in ', which in
turn follows from the expected length of the smallest gap in a sample of uniformly
random points in [0, 1]. From [30, pages 63—64] (based on an argument from [31]) we
have that for a sample of N uniformly random points from S' the expectation of the
minimum geodesic distance among pairs of points is 277/ N2. To relate the arc length
with the edge length of the convex hull of the sample, it is enough to notice that for
N > 3 the length of the smallest arc is at most 2 /3 and therefore the edge length is

at most the arc length and at least %5 times the arc length. The claim follows. O
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